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Abstract: During the last decades, advances related to the Internet of Things technologies have led to the widespread 

adoption of condition monitoring approaches for failure diagnosis. This fundamental vision has resulted in the introduction of 

advanced maintenance techniques such as Condition-Based Maintenance and Predictive Maintenance. Within this context, 

one of the main challenges arises from pre-processing the data acquired through sensors and, more specifically, the denoising 

procedures. Choosing a solid tool to separate the noise signal from the true one is usually considered a difficult task. In 

addition, data are usually collected from several different sensors, each of which monitors a specific process variable. 

Reducing the number of features analyzed could be helpful to improve the accuracy of the subsequent diagnosis and, at the 

same time, in making it less time-consuming. As a result, this paper aims at presenting a diagnosis approach based on 

Empirical Mode Decomposition (EMD) and Principal Component Analysis (PCA) for noise removal and feature reduction 

respectively. Indeed, EMD is very suitable for highly dynamic and non-stationary signals, while PCA is a good renowned 

approach for reducing the dimension of a multi-variate signal. Subsequently, a supervised machine learning approach is 

employed to classify the acquired signal. To demonstrate the applicability of the methodology, a compressor operating within 

a geothermal plant is considered as a case study, while the selected failure mode is the surge. The developed approach could 

be exploited by maintenance engineers and asset managers to perform diagnoses on relevant equipment. 

Keywords: Machine Learning; Empirical Mode Decomposition; Principal Component Analysis; Operating 

condition classification

I. INTRODUCTION 

In the last decades, the technological evolution has led 

to a vast diffusion of the Condition Monitoring (CM) as 

a support tool for making decisions on maintenance 

activities [1]. In turn, the diffusion of CM resulted in an 

ongoing effort to develop Condition Based Maintenance 

and Predictive Maintenance approaches [2-5]. Condition 

monitoring is defined as the process of measuring 

relevant Process Variables (PVs) to detect possible 

changes from a normal state to a faulty one [6]. A given 

PV is usually monitored through a specific sensor, 

whose acquired signal could contain high-noise 

components. Since there could be many monitored PVs, 

reducing the noise and the dimension of the data is of 

prominent importance to improve the accuracy of the 

subsequent classification techniques, while alleviating 

eventual time-consuming issues.  

Given the relevance of the topic, there is a great deal of 

research on signal denoising across different fields [7-

10]. De Faria et al. [11] successfully implemented a 

Discrete Wavelet Transform (DWT) to denoise a dataset 

concealing information related to the humidity, 

temperature, and light intensity of a lab. At first, the 

signal is decomposed into levels, and then the most 

energetic parts are extracted to rebuild the signal. 

Srivastava et al. [12] developed a DWT method based 

on the introduction of a user-automatically adjusted 

threshold level for denoising. Moreover, the authors 

introduced two thresholds for positive and negative 

wavelet coefficients. 

Meanwhile, Empirical Mode Decomposition (EMD) 

and derivative approaches have become quite popular to 

deal with noise reduction [7, 13, 14]. Quite recently, 

BahooToroody et al. [15] applied EMD to reduce the 

noise concealed within a monitored pressure of a 

pressure regulator. Subsequently, the authors exploited a 

Hierarchical Bayesian Regression and a Generalized 

Linear Model to predict the number of pressure 

exceedances. A more recent work by Dwivedi et al. [16] 

proposed an integration between EMD and Stationary 

Wavelet Transform (SWT) for denoising the powerline 

interference of an electrocardiogram signal. 

Specifically, the authors decomposed the signal through 

EMD and subsequently performed another step of noise 

removal via SWT. The attractiveness of the EMD is 

related to its features, which make it very suitable for 

dealing with nonstationary data and complex time-

dependent autocorrelation structure [17]. 

Within the context of condition monitoring, data 

reduction also plays a pivotal role. To perform this task, 
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many techniques could be adopted, such as 

Neighborhood Component Analysis (NCA) [18], Linear 

Discriminant Analysis (LDA)[19] and Random Forest 

(RF) [20]. Among all data reduction techniques, PCA is 

possibly the most common multivariate analysis 

technique in different disciplines [21]. Recent relevant 

examples related to PCA can be found in Parhizkar et 

al. [22] and Omuya et al. [23].  

The final step of condition monitoring consists in 

applying an algorithm capable of identifying the state of 

the monitored equipment. This task is usually 

accomplished through Machine Learning (ML) 

techniques, such as Support Vector Machine (SVM), 

Decision Tree (DT), RF, K-Nearest Neighbors (KNN), 

and Neural Network (NN). Within this context, an 

important difference is given between supervised and 

unsupervised learning. The first case is obtained when 

the acquired data are provided with a class, while the 

second one is related to a scenario characterized by 

unlabelled observations. 

Despite all the ongoing efforts, there is still space to 

propose a tool capable of classifying the operating 

condition of a device in case of high dimensional data 

with a strong non-stationary and non-linear nature. 

Indeed, as far as the authors know, the engineering 

related works on the application of EMD either involve 

a reduced set of PVs or they consider one single PV and 

EMD is applied after the extraction of relevant features 

such as the kurtosis. Consequently, the main objective 

of this paper is to present a framework capable of 

performing failure diagnosis in case several non-

stationary and non-linear PVs are monitored for the 

same component. Compared to other similar studies, 

EMD and PCA are directly applied to the monitored 

signals, rather than a set of extracted features. 

Furthermore, different kinds of PVs are considered such 

as thermodynamic (e.g., temperature) and physical (e.g., 

position of a valve).  

After this brief introduction, the remainder of this paper 

is organized as follows; Section 2 presents the core 

methods adopted for the study, while Section 3 

describes the developed methodology. In Sections 4 and 

5 the results are presented and discussed, respectively. 

Finally, in Section 6 the conclusions are drawn. 

II. MATERIAL AND METHODS 

In this work, the acquired signals are denoised through 

EMD and, subsequently, the data reduction is performed 

through PCA. Finally, the denoised and reduced signals 

are classified through a NN. The developed 

methodology is validated on real data acquired from 27 

sensors placed on different parts of a compressor 

operating in a geothermal plant. 

An overview of the main tools adopted to conduct this 

study is provided in the following subsections.  

 

A. Empirical Mode Decomposition 

Within the context of condition monitoring, a pivotal 

task is to reduce the noise of the signals monitored 

through sensors. The EMD is a filtering technique based 

on the Hilbert-Huang Transform [24] and it adopts a 

sifting process to decompose the signal into a series of 

Intrinsic Mode Functions (IMFs) and a residual term as 

depicted by Eq. 1. 

                                            (1)  

where  is the number of IMFs, while  and  

identifies the residual and the i-th IMF, respectively. 

Since any identified IMF could either belong to the 

noisy signal or the true signal, Eq. 1 could be rewritten 

accordingly (see Eq. 2).                                                               

                (2)                                                                                

In Eq. 2  and  denote a true signal IMF and a 

noisy IMF, respectively. To determine the noisy IMFs, a 

Statistical Significance Test (SST) is adopted. The SST 

requires the estimation of the mean period and the 

energy density for each IMF as illustrated in Eq. 3 and 

Eq. 4, respectively [17]. 

                                                                          (3)    

                                                      (4)                                                                                                              

where  is the number of observations, while  

represents the number of peaks of the i-th IMF. 

Subsequently, the null hypothesis of Eq. 5 is 

tested.

     (5) 

The null hypothesis is that every IMF is a noisy IMF, 

thus, the IMFs for which the null hypothesis is accepted 

are considered as noisy, while the others are true 

signals. 

B. Principal Component Analysis 

PCA is a dimension reduction approach that transforms 

high-dimensional data into a lower-dimensional space 

[25]. Data reduction is performed through the 

identification of the so-named principal components that 

are characterized by the highest variation in data [26]. 

Let MS be a multivariate signal and PC the matrix of 

principal components, then PC could be expressed as a 

linear transformation mapping as illustrated by Eq. 6. 

                                                          (6) 

where , indeed each 

 is a column vector in  denoting the coefficient of 

the linear transformation.  is a matrix where each 

component could be represented by Eq. 7. 

                      (7) 

where  is the first time instant, while  is the last one. 

The variance of a signal is proportional to its norm, 
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which is the energy of the signal. The norm of the j-th 

component is calculated through Eq. 8. 

                                                  (8) 

where  is the covariance matrix. The 

principal components are found iteratively by solving 

the eigenvalue problem shown in Eq. 9.  

                                    (9) 

where  is the largest eigenvalue. 

C. Neural Network 

A NN is a renowned machine learning technique 

inspired by human neurons. It is characterized by an 

input layer, an output layer and one or more hidden 

layers. Each layer is formed by nodes. The number of 

nodes within the input layer is equal to the number of 

inputs that are fed to the NN, while the nodes number of 

the output layer is set by users based on the desired 

output. The number of hidden layers and the nodes of 

each hidden layer are usually defined through an 

optimization process. The NN generates the outputs 

after combining the inputs through a series of activation 

functions and biases introduced through the hidden 

nodes. An example of NN is shown in Fig. 1.  

 

 

Fig. 1 schematic example of a NN 

 

III. DEVELOPED METHODOLOGY 

The sequence of the proposed methodology is shown in 

Fig. 2. 

The presented approach has two major stages named 

data pre-processing and processing, respectively. The 

first stage is divided into three steps, while the second 

stage has two steps. The first step consists of applying 

EMD for each acquired signal to determine the related 

IMFs (step 1). Subsequently, every IMF is screened 

through the null hypothesis of the SST (see Eq. 5), 

which allows us to detect and remove the noisy IMFs 

(step 2). To improve the accuracy of the subsequent 

classification approach and reduce the calculation time, 

a PCA is adopted on the denoised signals (step 3). The 

third step ends the data pre-processing stage. Next, the 

reduced dataset is split into a training and a test set, 

which is a process required to train and test the NN 

(step 4). Finally, the accuracy of the NN is estimated for 

both the training and test set (step 5). 

 

 

Fig. 2 sequence and steps of the developed methodology 

 

IV. RESULTS: APPLICATION OF THE METHODOLOGY 

A. Case study 

To describe an implementation of the framework, a 

compressor operating in a geothermal plant is chosen as 

case study (see Fig. 3). 

 

Fig. 3 schematic representation of the system concealing the 

considered compressor 

 

It is a three-stage compressor whose task is to extract 

non-condensable gas. The first stage is characterized by 

two opposing impellers keyed on the same shaft. The 

second stage has a single impeller which is attached to 

the same shaft of the first stage. The last stage has two 

opposing impellers as the first one, but it is built on a 

separate shaft. The plant operates in a single flash 

condensation cycle, and it can develop up to 20 MW. 

The extracted gas is processed together with the steam 

coming from a turbine and a condenser. 

The considered compressor could work under three 

distinct operating conditions identified as follows: I) 

regime or good working, II) anomaly working and III) 

surge condition. Specifically, the surge is an undesired 
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operating condition which is considered as the failure 

mode throughout all this study. A total of 29 time series 

were extracted for 27 different PVs (see Table 1), each 

of which is monitored by a distinct sensor. The time 

series were classified into regime, anomaly, and surge 

through expert judgements. Specifically, the experts 

identified the operating condition through the analysis 

of the inlet pressure of the compressor. 

TABLE I 

MONITORED PROCESS VARIABLES 

# Monitored process variable 

1 Net active power 

2 Wet bulb temperature 

3 Flow rate - low pressure stage 

4 Flow rate - high pressure stage 

5 Suction gas pressure - low pressure stage 

6 

Suction gas pressure - medium pressure 

stage 

7 Suction gas pressure - high pressure stage 

8 Outlet high pressure stage gas pressure 

9 Exhaust gas pressure 

10 Interstage pressure gas extractor 

11 Interstage pressure gas extractor 

12 Interstage pressure gas extractor 

13 

Suction gas temperature - low pressure 

stage 

14 

Suction gas temperature - low pressure 

stage 

15 

Suction gas temperature - high pressure 

stage 

16 First stage temperature 

17 Second stage temperature 

18 Third stage temperature 

19 Outlet capacitator temperature 

20 Outlet third stage temperature 

21 Interstage gas temperature 

22 Interstage gas temperature 

23 Interstage gas temperature 

24 Interstage gas temperature 

25 Position of the first anti-surge valve  

26 Position of the second anti-surge valve  

27 Capacitator absolute pressure 

 

B. Noise Removal and Data Reduction 

Some of the acquired signals, especially the pressure 

ones, are very dynamic and present high non-stationary 

and non-linear features. Thus, it is highly recommended 

to remove noisy components to obtain a more stable 

signal, which could be analysed more easily. It is 

worthwhile mentioning that the non-stationarity and 

nonlinearity are mainly associated with the surge events. 

For each signal of a given time series the EMD was 

applied, and the signal was divided into its 

corresponding IMFs. The sifting process to obtain the 

IMFs is stopped as soon as the residual does not present 

any peak (i.e., is monotonic) or when the maximum 

number of IMFs is reached. For this study, the 

maximum number of IMFs was set equal to 20. As an 

example, a signal from a surge event is considered. 

After decomposition, 11 IMFs were identified. Next, 

each IMF was tested through the null hypothesis of the 

SST. Specifically, the first and second IMFs were 

identified as noise, while the rest was depicted as true 

signal. The results are shown in Fig. 4 where the red 

dashed lines represent the lower and upper bound of 

acceptance hypothesis, while the black solid line is the 

mean value. Finally, the violet dots are the recognized 

noisy IMFs, whereas the green dots denote the true-

signal IMFs. 

 

 

Fig. 4 example of the EMD application and subsequent SST 

 

Next, the denoised signal was reconstructed through the 

sum of the residual and the detected true signal IMFs. 

Considering the previous example, the original signal 

and the denoised signal are represented by the black and 

red lines in Fig. 5 respectively. 

The starting data are strongly unbalanced since there are 

many more observations related to the regime operating 

condition. Specifically, 4,932,153 observations were 

monitored for the regime conditions, while only 

358,452 and 391,893 data points are associated with the 

anomaly and surge, respectively. Therefore, before 

applying the PCA, it is strongly recommended to 

balance the dataset. The lowest number of observations 

belongs to the anomaly operating condition, which is 



XXVII Summer School “Francesco Turco” – «Unconventional Plants» 

used as reference to obtain a homogeneous data set. 

Specifically, 75% of the observations were randomly 

sampled from the anomaly conditions (that is, 268,839 

observations). Subsequently, the same number of data 

points was also randomly extracted from the surge and 

regime conditions. Accordingly, 806,517 observations 

are considered for the PCA. Moreover, they were later 

exploited as a training set, while the discarded 

observations (i.e., 4,875,981) were used as test set.  

 

 

Fig. 5 example of original and denoised signal 

 

After the balancing of the dataset, PCA was carried out. 

It emerged that more than 95% of the variability is 

explained by the first five principal components, as 

depicted in Fig. 6 and Table 2. It is worth mentioning 

that the first three principal components are 

characterized by much more explained variability. To 

better underline this variability, Fig. 7 shows the data 

represented in the space of the first three principal 

components. 

 

 

Fig. 6 cumulative explained variability for each principal component 

TABLE II 

EXPLAINED VARIABILITY AND CUMULATIVE EXPLAINED VARIABILITY 

FOR THE FIRST FIVE PRINCIPAL COMPONENTS 

Principal 

Component 

Explained 

Variability 

Cumulative 

Explained Variability 

1 52.85 52.85 

2 22.82 75.67 

3 15.21 90.88 

4 3.36 94.24 

5 2.64 96.88 

As depicted by Fig. 7, the largest variability is 

associated with the first principal component which 

ranges between -250 and 150. On the other side, the 

variability associated with the second and third principal 

components are lower, since they are between -100 and 

200, and -150 and 150 respectively. The second and 

third principal components have a similar variability, 

which is also denoted by the weight associated with 

them by the PCA (see Table 2).  

To conclude this section, data reduction was performed 

by extracting the first five principal components of both 

the training and test set. Accordingly, from now on, the 

considered dataset has five inputs (i.e., the first five 

principal components) and one output (i.e., the 

operating condition). 

 

 

Fig. 7 training set observations represented in the space of the first 

three principal components 

 

C. Classification via NN 

At first, the NN was trained, thus the training set was 

fed into a NN with the characteristics reported in Table 

3. Specifically, the adopted NN has one fully connected 

hidden layer with 10 nodes. The Rectified Linear Unit 

(ReLU), shown in Eq. 10, was chosen as the activation 
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function.  denotes the input that is passed to a neuron. 

                                                     (10) 

TABLE III 
CHARACTERISTICS OF THE ADOPTED NN 

Variable Value 

Number of fully connected layers 1 

Layer size 10 

Activation function ReLU 

Iteration limit 1,000 

Regularization strength parameter 0 

The training was conducted through a 5-fold cross 

validation, and it resulted in the confusion matrix 

illustrated in Table 4, where the correct classifications 

are highlighted through a light blue cell. 

It emerged that 763,205 observations were correctly 

classified, while the remaining 43,412 data points were 

associated with a wrong class. Thus, the overall 

accuracy of the training was estimated at 94.63%. Based 

on this value, it is possible to state that the NN was 

successfully trained. However, it is necessary to verify 

how the NN performs on data that were not used for the 

training process. To this end, the built NN is exploited 

to predict the class of the test dataset that was excluded 

during the training. The confusion matrix obtained from 

the test procedure is shown in Table 5. 

 

TABLE IV 

OBTAINED CONFUSION MATRIX FOR THE TRAINING SET 

  Predicted 

  Regime Anomaly Surge 

True 

Regime 250,470 17,969 400 

Anomaly 8,581 250,152 10,106 

Surge 443 5,813 262,583 

 

TABLE V 
OBTAINED CONFUSION MATRIX FOR THE TEST SET 

  Predicted 

  Regime Anomaly Surge 

True 

Regime 4,452,882 206,578 3,854 

Anomaly 1,515 85,558 2,540 

Surge 154 3,637 119,263 

Based on Table 5, it is possible to state that the 

developed NN has good generalizability. In fact, 

4,657,703 observations were correctly classified, while 

a misclassification occurred for 218,278 data points. 

Accordingly, the test accuracy is equal to 95.52%.  

V. DISCUSSION 

From the previous section, it emerged that the NN has a 

high accuracy for both the training and the test set; thus, 

it could be adopted for diagnosis tasks. To have a better 

grasp on the performance of the NN, it is required to 

analyze the confusion matrices obtained more in-depth. 

For this purpose, let us define a relative accuracy for 

each operating condition as revealed by Eq. 11.  

                                   (11) 

where  and  

identifies the total number of observations and the 

correctly classified observations of the i-th operating 

condition. For instance, considering the training dataset 

of the regime condition, the total number of 

observations is equal to 268,839, while the correctly 

classified data points are 250,470. The aforementioned 

values result in a relative accuracy equal to 93.17%. The 

relative accuracy estimated for the three operating 

conditions is listed in Table 6. It emerged that the 

highest relative accuracy is related to the surge 

operating condition for both the training and the test 

data. Furthermore, the test relative accuracies of the 

regime and anomaly state are higher compared to the 

training ones. This is an indicator of good 

generalization.  

TABLE VI 

TRAINING AND TEST ACCURACY FOR EACH OPERATING CONDITION 

Operating 

condition 

Training 

accuracy (%) 

Test accuracy (%) 

Regime 93.17 95.49 

Anomaly 93.05 95.47 

Surge 97.67 96.92 

Another relevant discussion is related to 

misclassifications. Indeed, it is pivotal to understand 

which are the relationships between true and predicted 

class. Considering the regime state, it is mostly 

misclassified as anomaly. Specifically, 98% of the 

classification errors predicted a regime observation to 

be an anomaly, while only 2% resulted in a surge 

misclassification. With regards to the anomaly state, 

there is almost no difference in misclassification 

between anomaly and surge. Finally, the surge working 

condition is mostly misclassified as anomaly (93% and 

96% of the time for training and test respectively). The 

aforementioned considerations ensure that it is unlikely 

to classify a regime condition as a surge and vice versa.  

VI. CONCLUSION 

This paper presents a framework for classifying the 

operating condition of a monitored equipment. The 

proposed approach can be used for classifying the 

operating condition of a device even in case it is 

characterized by highly dynamic and non-stationary 

PVs. The methodology is based on the application of 

EMD and PCA as core tools for noise removal and data 

reduction, respectively. Furthermore, as a classification 

tool, a NN is adopted. The proposed approach is tested 
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on data coming from a compressor, whose operating 

conditions are identified as regime, anomaly, and surge. 

The results are quite promising, as the training and test 

accuracy are equal to 94.63% and 95.52%, respectively. 

Furthermore, the probability of incorrectly classifying 

the regime state as surge and vice versa is quite low. 

Further works can consider different case studies with a 

higher number of monitored signals. Finally, the 

adoption of distinct data reduction techniques (e.g., 

NCA, LDA) and ML approaches (e.g., SVM, DT, RF) 

can be tested coupled with EMD. 
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