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Abstract: In recent years, the supply chain management discipline has attracted an increasing set of challenges. 
Supply process sustainability issue, the increasingly competitive level registered within and between industries and 
unexpected catastrophic events – such as COVID-19 pandemic – have generated the essential need for every kind of 
manufacturing enterprise to increase resilience and to rely on robust decision-making tools. The digital solutions 
introduced nowadays aim at making companies extremely agile facing different demand behaviours, shaping 
production, and warehousing policies. Unfortunately, enabling technologies are not easily accessible to every 
company, especially for a SME. In order to ease the access to those technologies’ potential benefits, in this article we 
develop a model that helps to identify the best inventory stock policy for every product, considering economic 
aspects, the uncertainty tied to the sell-out price trend, the production system features and parameters, focusing on 
SMEs afflicted by high perishability problems. After reviewing the current literature, we first classify different 
demand trends into specific categories, according to their singular behaviour. Thus, both unexpected and usual 
demand’s influencing factors are defined, such as seasonality and commercial actions in general. Simultaneously, the 
main stock policies are examined and set as the outcome of the model. After a concise production strategy 
evaluation, a series of simulations leads to the most efficient and effective stock policy. Basing on the demand class 
and considering the specific production approach, the model elaborates the best policy which allows the company 
both to minimize wastes, stockout and overstock events, and to maximize the operational efficiency and 
effectiveness from an economic and temporal perspective, focusing on perishability and shelf-life constraints. The 
model allows the company to increase its resilience facing unexpected events, constantly aiming at enhancing the 
company awareness about its own capability to react with the best strategy to the supply chain challenges. 
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1.  Introduction 

It is well known that the expanding need for food is the 
result of some worldwide phenomenon such as the 
population increase. Thus, markets and industries are 
experiencing a level of competitiveness never seen before, 
in which technology plays a key role. Furthermore, 
customers’ expectations to quality and traceability of 
products are continuously increasing their level, with an 
ever more careful look to environmental, economic, and 
social implications. Just these aspects generate a 
reasonable pressure onto supply chains issues, especially 
on inventory and production decisions. Wrong choices in 
these fields can lead to inefficiencies, translated into 
wastes, shortages, and destruction of value with heavy 
consequences under multiple points of view. Each of 
these issues are emphasized when an unexpected 
catastrophic event arises – such as COVID-19 pandemic 
– and every single supply chain knot is stressed, from the 
procurement to the material flow control.  

In food industry, the importance of the above-mentioned 
kind of decisions increases because of the perishable 
nature of the products. This variable makes the system 
more complex transferring a trouble much more rapidly to 
every supply chain node with respect to other industries 
(Wang, et al., 2017). Indeed, shelf life of foods is one of 
the main aspects that should be focused on both in 

storage and in delivery phase. Losing their functionality 
and therefore their market value, at the end of their useful 
life goods must be scrapped and the whole effort allocated 
on the production is lost. On the one hand, an overstock 
event will imply an extra-cost and a sure waste; on the 
other hand, a stockout will be translated in a demand loss. 
These scenarios must be absolutely avoided because of its 
brutal consequences on environment and economic 
systems (Huang, et al., 2018). What really generate 
inefficiency, uncertainty and imbalance along the supply 
chain is the variable length of the Delivery Lead Time 
(DLT), the amount of available information, decisions 
about policies, process optimization approaches and final 
customers’ demand variability. Each of these elements 
affect the supply chain efficiency, influencing raw 
materials (RM) procurement processes, production 
planning and strategies, inventory management activities 
and finished product (FP) delivery. 

Since this, food production enterprises have to set among 
their objectives the minimizing of food waste, as well as 
maximizing efficiency and resilience, beyond the essential 
profit. Keeping scrapping to a minimum level, both the 
enterprise and society will take advantage. Enterprise will 
be able to minimize production and stockholding costs 
with the same demand fulfilment level, while environment 
will benefit suffering a lower impact in terms of carbon 
footprint (Sel, et al., 2017). The production capacity – 
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earned by the inefficiency reduction – will carry welfare to 
society, allowing to better fulfil the growing demand. In 
order to achieve this purpose, both large enterprises and 
small-medium sized enterprises (SMEs) should rely on 
robust and fast decision-making tools, able to reduce 
uncertainties and to support their management about 
inventory and production issues. 

This paper primarily aims at elaborating a model that 
should be involved to determine the optimal inventory 
stock policy basing on the demand behaviour and 
considering economic aspects, such as the minimization 
of stockholding and production costs. In dynamic 
contexts – where demand is subject to seasonality, trends, 
and other fluctuation elements – it is fundamental to 
continuously observe the system performances and to re-
evaluate the control parameters in order to adopt the best 
possible approach. In addition to this, the model also 
evaluates the stock policy sustainability in terms of food 
waste quantity and value. The best matching between 
demand type and stock policy is led also including the 
product perishability constraints and the production 
strategy parameters. The resulting decision-support tool 
should be used recurrently – especially when the boundary 
conditions change – in order to minimize stockout events 
and to switch to the most efficient policy. 

2.  Literature review 

In this section, we provide a brief overview of the main 
features which characterise the studies focused on 
inventory management concerning perishable goods. A 
deep analysis about the current state-of-the-art literature is 
rigorously presented by Janssen (Janssen, et al., 2016). 
Because of the topic complexity – due to the wide supply 
chain management scope – many research areas are 
identified, related to different time span: perishable 
inventory models, continuosly deteriorating models, 
inventory systems, blood bank models, production-
distributing planning, traceability and so on. It is usual 
that, within the single work, the reader can find several 
topics including the optimal production lot-sizing coupled 
with the best stock policy or the optimization of the order 
quantity tied to the minimization of the payback period of 
the investment. Basically, two main factors operate as first 
principal watershed: the demand and the products’ shelf-
life nature. The first one generates two major categories 
according to how it is treated. Indeed, it may be 
considered as definite and consequently the work is based 
on deterministic assumptions. This kind of approach can 
be used to lead ex-post analysis or to validate a certain 
mathematical model to help production planning 
activities. In fact, in this case demand is already known. 
Quite the opposite, when several sources of uncertainty 
and variability are taken into account, demand assumes a 
stochastic characterization. In particular, the demand 
forecasting – performed with the usage of a wide variety 
of statistical approaches – is implemented to foresee as 
well as possible the future events – i.e. often trying to 
minimize the mean standard error (MSE) – and to take 
advantage with regards to inventory stock policy decisions 
or whatever critical-to-success choices. Shelf-life issue is 
approached by modeling the useful life of product either 

as known, i.e. with a fixed life-time, or with a random 
function. In particular, in the latter case a Weibull 
distribution is often used in order to describe the 
deterioration function of perishable goods. The relevance 
of the studies focused on foods is witnessed by the large 
and increasing number of works published concerning 
this topic. Indeed, while Bakker’s literature review 
(Bakker, et al., 2012) analysed 227 papers produced in 
eleven years, Janssen traced 393 in just three years (2012-
2015). 

Even Maihami (Maihami, et al., 2021) provides an 
effective way to classify literaure works, in line with this 
paper’s needs. Four main criteria are proposed to 
distinguish relevant works. Demand has a decisive impact 
on procurement planning, lot-sizing and many cost items. 
Since this, the demand function type must be considered 
in order to optimize decisions. In particular, they suggest 
to refer to multiple demand functions in which one or 
more variables among time, price and stock level influence 
the evolution of sales volumes. The second variable to 
take into account consists in shortage events. Even if this 
could be considered as a predictable aspect in inventory 
management issues, Maihami proposes an interesting 
vision about this kind of events. In fact, it is detailed in a 
more precise way, presenting three different scenarios. 
Shortages can be considered as lost sales since the vendor 
loses the customer because of the unfulfilled demand. If 
the latter is more loyal, then the shortage will cause only a 
backlog, and the customer will wait until the next 
replenishment cycle. The third case proposes a mixed 
situation, in which a portion of customers will turn to a 
direct competitor, while the remaning will patiently wait 
until the next replenishment cycle. Therefore, beyond the 
immediate sustainability and economic troubles, shortages 
could also lead to long-term inefficiencies, causing a 
hardly recoverable share of market loss, especially 
concerning the food industry. The third aspect to evaluate, 
in order to contextualize a paper, are marketing and 
commercial influencing factors. They are able to modify 
the demand trend, and consequently all technical decisions 
about inventories. The last feature focuses on the so-
called “greenness” of the inventory model. With this 
expression, the author means the attention paid to the 
impact that a specific inventory policy or system has onto 
the environment, mainly in terms of food waste and 
carbon footprint. 

Many studies have focused their efforts in modeling the 
impact of pricing and production capacity on inventory 
control decisions (Rezagholifam, et al., 2020), always 
including advanced mathematical tecniques to determine 
the optimal solutions, but overlooking the ease of use, 
especially for industrial realities in which sophisticated 
knowledges are not always available  (Müller, 2017). In 
this paper, we face a scenario in which many of the above-
mentioned features are taken in consideration. A set made 
up by four different perishables are analysed. Their 2019 
daily demand is known and each of them have a fixed 
shelf-life. Traceability is a basic assumption on which the 
model is based. It will not imply a generality loss, since 
HACCP and ISO 22005 have become mandatory. After 
having characterized the demand, according to a specific 
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model specifically developed by Williams and illustrated 
by Syntetos (Syntetos, et al., 2005), and after having 
pointed out the influence that promotions had on the 
demand pattern, the best inventory stock control policy is 
highlighted basing on a specific transfer function which 
takes into account some peculiar production and logistic 
parameters. In particular, stockholding costs and 
production costs must be minimized, and simultaneously 
the service level (SL) has to be optimized. In line with the 
no longer negligible importance of sustainability of every 
acitvity involved in supply chain scope, many authors have 
included in their works the role of environmental impact, 
embodying those aspects into the objective function of 
the mathematical model. Bortolini  (Bortolini, et al., 2019) 
succeded in optimizing a bi-objective model in a logistic 
network under sustainability and efficiency of stocks. 
Even in this work sustainability plays a main role in 
evaluating the best stock policy. The minimization of the 
food waste is at least as important as the reduction of the 
two main cost items taken into account. 

3.  Model architecture and entities 

Inventory management is a challenging topic within the 
supply chain management. This discipline – strictly tied to 
the production management – can be considered as a 
systematic approach that involves RM sourcing and the 
FP storing and delivery. The existence of inventories is 
due to essential needs expressed by a company to meet as 
many times as possible the customer demand. Indeed, 
inventories allow to protect companies from uncertainties 
tied to a long list of sources, such as demand and supply 
lead time. Inventories’ decoupling function allows the 
production company to continue the manufacturing 
activities, despite the supplier delays in RM delivery or to 
continuously fulfil the final customer demand, regardless 
its nervousness and unpredictability. RM and FP 
warehouses protect the company from external 
unexpected events coming from the task environment in 
which it operates, avoiding stock-out and overstock cases. 
Within the manufacturing company, some warehouses – 
or simply buffers – are put between the above-mentioned 
structures in order to grant as much as possible the 
smoothness of production pace, bypassing starving and 
blocking events on the production floor. Meanwhile, 
inventories are sources of stockholding costs i.e., that cost 
item generated by the only presence of stocks within 
warehouses, by their assurance and all the other general 
cost elements incurred to keep them – e.g., shelves, energy 
to keep the right environmental conditions. Regardless 
their position along the supply chain or the production 
process, when we talk about perishable goods, it gets 
more complicated. Inventories not only perform the 
mentioned duties, but they are also called on to correctly 
keep the physical and chemical conditions within certain 
limits. This can also result in a greater use of energy and a 
consequent higher keeping cost. The model’s purpose is 
to provide a simple and user-friendly tool, but that 
includes as many aspects as possible for the determination 
of the best stock keeping policy, also taking into account 
the goods’ shelf-life constraints and implications. 

3.1 Stock policies 

An inventory system has the duty to provide operational 
policies in order to control and to keep the right stock 
level, at the right time and at the right place. The system is 
in charge of the timing concerning the order placement 
and of its tracking. It is essential to track and trace what 
has been ordered, its quantity and its supply lead time. 
Applying this concept to a FP warehouse, the previous 
supplier turns into the production line, because it is just 
the entity which provides the stock keeping unit (SKU) 
stored towards the final warehouse. In perishable goods’ 
industries, the matter become more complex. In fact, the 
deteriorating constraint is added to the just wide pre-
existing set. 

In order to better manage these issues, many stock control 
policies have been modelled over the last decades (Eilon 
& Elmaleh, 2007). We reviewed those schemes and 
adapted them to the specific case of a FP warehouse 
concerning decomposable goods. The model evaluates 
and returns the best solution basing on demand pattern 
and a series of specific parameters. The scenario considers 
the warehouse that is from the one hand supplied by the 
production system and from the other hand depleted by 
the customer demand. In particular, we have considered: 

• Re-Order Level (ROL): the order must be launched 
when a certain stock level is reached – that is the re-
order level (RL). The re-ordered quantity is 
considered to be the economic batch quantity (EBQ), 
computed evaluating the best trade-off between the 
stockholding costs and the production cost. In order 
to protect from uncertainty tied to production lead 
times and to the final demand, a safety stock (SS) has 
been considered. It is important to highlight that this 
policy can be implemented if inventory is subject to a 
continuous check. The latter would favour a better 
control of the single product’s deterioration state. 

• Re-Order Cycle (ROC): the order can be launched 
only every re-order interval (RI) and only if the stock 
level is below an “augmented” re-order level (RL’). 
Indeed, the stock control is blind during the RI and 
both the RL and SS must also include RI as a source 
of uncertainty. The re-order quantity is fixed, and it is 
equal to the EBQ. In this case the inventory control 
becomes periodic. The rigidity in reordering time 
could cause serious problems if RI is different from 
the product’s useful life. Even the higher SS do not 
work in favour of perishable goods. 

• Base Stock Policy (BSP): the order must be launched 
every RI, but the quantity ordered varies with respect 
to the previous cases. In fact, the lot is equal to the 
difference between a target stock level (TSL) – 
previously planned and fixed – and the current stock 
level. TSL and SS include RI in their own 
computations and inventory control is periodic. This 
policy is often used when the physical storage space is 
limited. The “augmented” SS and the mandatory 
reorder penalise this policy with respect to the 
perishable goods management. 

• Min-Max Policy (l, L): in this case two levels are set, 
that are a minimum (l) and a maximum (L). As in the 
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previous case, the lot size depends on the current 
inventory level and the order is launched if the stock 
goes below l and every RI. Even in this case SS are 
“augmented” with respect to the ROL policy and 
perishable goods would be disadvantaged. 

• Two-bin Policy (TBP): this is the simplest case, and it 
is often implemented for low-value SKUs. This 
policy considers a trivial dynamic, basing on the 
computing of the bin dimension (B): having available 
two bins of equal size, the order is launched every 
time the first one is completely depleted and, while 
the supply chain starts, the demand depletes the 
second bin. If B is conveniently right-sized, this 
policy will favour the shelf-life constraints 
management. 

Basically, every time a policy fixes one of the considered 
parameters, invalidating its flexibility, it reduces its 
capability to fulfil the perishable goods requirements. 

3.2 Demand classification 

This work aims at matching a certain demand pattern to 
the best stock policy, considering the values assumed by a 
set of specified indicators concerning the inventory 
system performance under multiple perspectives. In this 
paragraph, we illustrate the model which we based on in 
order to categorise the model’s main input behaviour: the 
customer demand. It is the cause of the stock level 
lowering and its uncertainty sources are the main entities 
which the model wants to protect the inventory from. 
Many authors have focused their studies on the 
categorization of demand patterns in order to match the 
best forecasting method. Williams (Williams, 1984) is the 
author of the system on which the model is based in order 
to assess the time series behaviour. He based his idea on 
the partition of the demand variance during lead time into 
its main constituent parts. The variables to consider are: 

• λ – the mean demand arrival rate. 

• APLT – average production lead time. 

• SVC – demand size squared variation coefficient, 
computed as the ratio between the demand standard 
deviation and its average. 

The 1/λ∙SVC (1) ratio characterizes how intermittent the 
demand is, since the rate can be also read as the number 
of lead times between successive demands. The higher is 
the ratio, the more intermittent the demand is. The 
SVC/λ∙APLT (2) indicates the lumpiness of the demand. 
These two ratios determine the dimensions of the matrix 
in which demand patterns can be allocated. As reported in 
the figure below Figure 1: Williams’ demand categorization 

matrixFigure 1), the matrix is made up by five areas, 
delimited by some defined cut-off values. Williams 
indicates them with alphabetic letter from A to D, but 
detailing the latter in two further sub-categories, D1 and 
D2. Area A represents the smooth demand patterns; B is 
referred to the slow-moving category; C is the area 
dedicated to the irregular ones; D1 and D2 are 
respectively addressed to erratic and highly erratic demand 
patterns. 

 

Figure 1: Williams’ demand categorization matrix 

In addition to the classification, the model also receives as 
input further information about the demand pattern in 
order to better understand what really influences its 
allocation to a specific stock policy. In particular, some 
influencing factors (IF) are detected. They can be 
primarily divided into two main categories: intrinsic IF 
and extrinsic IF. The first class includes entities like trend, 
seasonality and cyclicity, embedded inside the demand 
pattern and out of the company direct control. In the 
second cluster, we could consider variables directly 
controllable by the company. Commercial and marketing 
actions are clearly a prime example of extrinsic demand 
IF. 

3.3 Production system characterization 

This model is structured by look-back stock policies. 
These procedures work in production systems in which 
the finished product warehouse (FPW) – that is 
downstream with respect to the production line – is 
decreased by the final demand and then it has to “pull” 
the needed quantity, according to specific production 
parameters. That quantity will be produced in a certain 
production lead time (PLT), identified by an average 
(APLT) and a variance (σ²PLT), and depending on a 
certain production rate. The production strategy can be 
referred to the job shop category, in which batches – 
opportunely sized – follow a specific activity sequence. 

The model makes a step forward also including a tight 
constraint concerning the products’ deteriorating nature. 
Many goods lose their quality or value over time because 
of physical condition changes or monetary value issues. In 
this model the user set the perishability lifetime (PL) 
parameter, setting the product’s useful life. If the good 
exhausts its whole useful life while stocked, then it must 
be destroyed, and it will lose its entire value. That value is 
considered to be equal to its production cost. This is a 
direct consequence of an overstock event in presence of 
perishable goods. During the whole material flow, 
products generate cost elements, which are typically 
counterbalanced by the value produced and acknowledged 
by the market through the price. In this model we take 
into account two cost items: the periodic stockholding 
cost and the production cost. The first one is typically 
computed as a percentage of the stocked value, while the 
second one is typically computed summing the unitary 
RM cost and the labour one – following a direct costing 
accounting method. Taking inspiration from the 
Maihami’s work (Maihami, et al., 2021), shortages are 
considered in the same manner as a lost sale, quantified by 
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multiplying the unitary selling price and the quantity of 
lost demand  

The framework relies both on the Hadley-Whitin model 
concerning SS and on the EBQ one, conveniently re-
adapted to the reference framework. For instance, in both 
the models the variance tied to the supply lead time has 
been turned into the variance tied to the PLT. 

4.  The model proposal: how it works 

The model aims at recurrently support decisions 
concerning the inventory management area. External 
influencing factors, such as unexpected and upsetting 
events – as COVID-19 pandemic, may dangerously affect 
the company business, causing great economic losses. In 
addition to this, production and inventory systems must 
aim at revolutionizing their paradigm towards sustainable 
goals. In food industry, overstocks and bad inventory 
managing practices cause a great amount of product 
waste, in addition to a devastating impact onto the 
environment. In addition to these objectives, the model is 
designed to be the as easy-to-use and user-friendly as 
possible. The user activities are thought to be minimized 
and they only consist in explicating in the model some 
essential parameters. The dynamic nature of the model 
allows the inventory manager to have a continuous advice 
about which is the best inventory stock policy to 
implement in that specific period, basing on the demand 
trend and on the boundary conditions. 

The data flow starts from the upload of the demand time 
series database. Data must be organized following the 
same temporal unit and must refer to the same time 
horizon. The information associated to each of the time 
bucket must be the sold quantity, the unitary sell-out 
price, and average promotional discount. The granularity 
must be the same. The data upload will automatically 
allow the model to compute the whole parameters needed 
both to categorize the demand pattern into a specific 
cluster – from A to D2 – according to the criteria 
expressed in paragraph 3.2 and to compute all the 
essential components for each policy – SS, RI, RL, etc. 
Once the user has completed this demand upload activity, 
he is asked to entry the values of a precise set of 
production parameters for each of the analysed product, 
among which we can highlight: 

• PR - production rate referred to the temporal time 
bucket. 

• ISL – initial stock level. 

• TSerL – target service level, expressed in k, i.e., the 
number of standard deviations needed to reach a 
certain SL. 

• PL – perishability lifetime. 

• Pc – production cost of the single batch. 

• %VAL – percentage to multiply with the average 
unitary sell-out price (AUP) in order to compute the 
stockholding cost per period. 

Once these data are entered, the model first automatically 
elaborates the whole set of descriptive parameters to 
classify the demand pattern (1) (2), previously introduced 

in paragraph 3.2. Williams’ classification method has been 
validated on data series coming from automotive industry, 
but the cut-off values can be calibrated according to the 
specific need and to the peculiar industry in which the 
company operates, including perishable goods industries. 
Simultaneously, the model elaborates the production 
parameters needed. Every single stock policy is simulated 
from the order launches to the over-stock – wasted 
product - and stock-out events – demand loss. In every 
single policy framework, all the order launch rules – 
illustrated in the 3.1 paragraph list – are observed 
according to the specific case and all the related sawtooth 
diagrams are elaborated, evaluating the inventory stock 
level during the entire time horizon. Every result is 
immediately accessible, and it can be modified to simulate 
a different scenario from the real one, meeting the 
eventual needs to lead what-if analysis. The results are 
stored into a definite table in which some specific 
computations are executed. In fact, the next step followed 
by the model is the computing of the principal indicators 
that the transfer function will take into account in order to 
state which is the best stock policy for that specific 
demand behaviour. In detail, the following indicators are 
computed (in particular (3) (4) (5) (6) (7) (8) and Table 1): 

• ASL – actual service level (%). 

• AStL – average stock level. 

• STC – stockholding cost (total). 

• PC – production cost (total). 

• DL – demand loss, that is computed both in the unit 
of measurement and in terms of economic value. In 
particular, it is equal to the integral of the whole 
stock-out (SO) events during the entire time horizon 
T. 

• FW – total product waste (Wa). It is the total amount 
of goods which overcame the PL during its 
warehouse stay. Thus, they must be destroyed. Even 
in this case, it is computed both in the unit of 
measurement and in terms of economic value. Even 
in this case, it is computed as in the previous case. 

Table 1: Model parameters computation formulas 

Indicator Formula Ref. 

ASL  (3) 

AStL where  Vi = Volume sold at time i  
T is the entire time horizon 

(4) 

STC  (5) 

PC  (6) 

DL  (7) 

FW  (8) 

Every product is evaluated in each of the five considered 
stock policies. Thus, a matrix of results values will be 
structured as follow: on the rows the just exposed 
evaluation criteria are put. On the columns the different 
policies. The matrix data are appropriately normalised in 
order to homogenise the values. Thus, a weight vector W 
is associated to each criterion in order of importance of 
the specific scenario. In this way, every stock policy, for 
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each product, has a certain mark assigned by the transfer 
function. The latter sums the factors which negatively 
contribute to the mark – AStL, STC, PC, DL and FW – 
and subtracts the positive contribution of the ASL. The 
policy that will reach the lowest score, will be the best 
solution for a product characterized by certain parameters 
of perishability and a certain type of demand. Basically, we 
could consider the just presented model’s computations as 
the transfer function which, receiving in input the user 
parameters and the actual state of the inventory system, 
returns the best inventory stock policy according to some 
specific KPIs and their relative importance. The output 
will point out the next state of the system that will be 
recursively assessed by the transfer function. 

5. A model simulation in fresh food industry 

In order to validate the model efficiency and to clarify the 
process, we decided to implement the proposed scheme 
to a database made up by four different products – P1, 
P2, P3 and P4 – characterised by different production, 
perishability, and demand pattern features. The scenario is 
typified by a multi-period inventory system. In this 
paragraph, the whole analysis process will be evaluated 
referring to the product P1, with PL equal to 5 days. The 
demand pattern consists of the active invoices tied to P1, 
as far 2019 year is concerned. The same path is valid for 
the other products. 

 

Figure 2: P1 demand in February 2019 

In addition to the sales volume – partially reported in 
Figure 2 as far P1 is concerned, database also provides the 
unitary sell-out price and the discount applied in that 
specific period. The model immediately computes the 
entity of the latter as an extrinsic influencing factor. Trend 
and seasonality – intrinsic IF – are elaborated through the 
usage of an extrapolation method (Shumway & Stoffer, 
2011) able to isolate these time series components. 
Simultaneously, the model elaborates a table in which the 
key variables are computed in order to categorise the 
demand pattern within the right cluster. After the cut-off 
parameters have been set, the model elaborates the data 
and outputs a table as the following (Table 2). 

Table 2: P1 demand pattern class: B 

Variable Value 

λ 0,97 

APLT 0,50 

SVC 0,32 

At this point, the model receives as input the production 
parameters introduced in section 4. Thus, the stock policy 
simulation starts. The demand pattern is elaborated, and 
the re-order rules and parameters are set according to the 
stock policy analysed. The stock level is computed for 
each time bucket considering the waste food to be 
destroyed if the PL is overcome and the replenishment 
events coming from the EBQ arrival. The model takes 
into account all the stock-out and the over-stock events, 
also considering the SS level. The model returns the table 
in which the above-mentioned performance indicators are 
summarized for each product and for each stock policy. 
The P1 stock level and recap table is reported below, 
respectively in Figure 3 and in Table 3. 

 

Figure 3: P1 stock level in February 2019 

Table 3: P1 policy assessment table 

Indicator ROL ROC BSP l, L TBP 

ASL [%] 82,2% 83,8% 83,0% 80,5% 84,1% 

AStL [Kg] 1,05K 1,46K 1,33K 2,17K 2,55K 

STC [K€] 18,8 26,7 24,5 39,8 46,9 

PC [K€] 11,9 15,1 18,2 18,2 15,5 

DL [K€] 63,4 69,5 55,9 85,8 32,1 

FW [K€] 4.9 9.5 7.4  11.9  12.5 

 

Passing through a normalization of each vector associated 
to the single criterion, the table is transformed such that 
the sum of the row gives 1. After criteria have been 
assigned to each indicator, the previous normalized table 
is multiplied with the W vector and a table of weighted 
values is obtained. The grade of the stock policy – 
referred to the product taken into account – is given by 
the sum of the values reported in the related column, 
except for the first element, which is subtracted. That is 
exactly how the transfer function works in this model: by 
computing in a certain way the stock policy mark and 
considering the influence of several factors, it connects 
the demand pattern class to the best stock policy. In the 
P1 case, the best stock policy returned by the model is the 
ROL. Even if the ASL is lower than the one proposed by 
TBP, the ROL policy allows to have lower costs in terms 
of production, stockholding, and food waste. In 
conclusion, the model suggests adopting a ROL policy for 
a perishable good like P1, characterized by a 5-day PL and 
by a certain demand behaviour classified in the B cluster. 
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Fore completeness, the results associated to the other 3 
products are reported below. P2, has a D1 demand 
pattern and a 10-day PL. The model suggests a ROL 
policy. P3, has a B demand pattern and a 2-day PL. The 
model suggests a TBP policy. Finally, P4 has a C demand 
pattern and a 12-day PL. The model suggests a ROL 
policy. 

6. Conclusions and future development 

In the last decades, supply chain management became a 
central discipline in business management, regardless the 
company size. It is clear how decisions taken in this 
company function heavily impact on the whole company 
fate. One of the main tasks it has to address to is the 
inventory management, that is the systematic material 
flow management both within the company warehouses 
and along the whole supply chain. In this work we 
propose a model that aims at supporting the warehouse 
manager to choose about the best stock control policy, 
according to the product demand pattern. Exploiting 
some information extrapolated through time series 
analysis techniques and using some well-known model in 
operations management, the model links the best stock 
policy control for the specific product. Since its design, 
this tool has been thought to be easily used by the 
responsible of the inventory. Beyond the optimization of 
the ASL and the minimization of the whole set of 
warehouse item cost, the model sets among its objectives 
to keep track of the impact that the goods waste has both 
on the business and on the environment, introducing a 
sustainability view of the inventory operations. 

From a technical perspective, this model could be 
improved by enhancing the SS model. The ASL is often 
far from the target one because of other uncertainty 
sources, not considered in the actual model. The same 
matter is for the demand classification model considered: 
it would be a great improvement to enhance the model, 
aiming to understand the widest possible set of patterns. 
In order to improve the model performance, a demand 
forecasting module could be implemented. In fact, the 
user can actually use the model only to execute ex-post 
analysis. Knowing in advance the best policy to be 
applied, benefits could increase, causing positive effects 
on the entire company. It could be very insightful to 
provide the possibility to translate the food waste amount 
into carbon foot-print equivalent. This could help the 
company to better account its social and environmental 
responsibility to its stakeholder, and it would be a stimulus 
towards the operations continuous improvement. Beyond 
these technical improvements, further validation could be 
executed. It would be a great success to see how the 
model reacts to an unexpected and catastrophic event – 
such as COVID-19 pandemic. The actual model is just 
able to make more resilient the inventory stock control 
system, allowing to switch to the best policy according to 
the scenario, just in few steps. If the model succeeded in 
facing a so devasting phenomenon, its robustness would 
be extremely verified. In order to further validate the 
model, it would be extremely interesting to implement the 
tool also in other industries with the same perishability 
problems. With these improvements and adaptations, the 

model would express its whole potential, and it could 
become a very effective tool towards the operational 
excellence. 
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