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Abstract: Maintenance scheduling is critical in many industries, and recent advances in Deep Reinforcement 

Learning (DRL) have shown that it can optimise scheduling decisions in complex and dynamic contexts. 

Traditional methods of maintenance scheduling frequently confront obstacles, making DRL an appealing 

alternative. This study presents a novel approach for autonomously determining optimal maintenance scheduling 

decisions in production systems that blends a simulation-based model with a DRL agent. The learning agent 

makes intelligent judgements based on the chance of failure and machine availability through trial and error. The 

setup of the DRL setting, particularly the reward function, has a considerable impact on the approach's 

performance. The proposed hybrid simulation-based and DRL methodology outperforms existing heuristic 

methods in rigorous evaluation, demonstrating its promise for efficient and effective maintenance planning and 

scheduling. This work sets the way for better system reliability and productivity in companies that rely on 

complex systems. 
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I. INTRODUCTION 

Maintenance scheduling plays a critical role in 

numerous industries, as it directly impacts the 

operational efficiency, reliability, and cost-

effectiveness of equipment and systems (Rai et al., 

2021)(Grassi et al., 2023). Effective maintenance 

scheduling ensures that maintenance activities are 

strategically planned and executed at the right 

time, balancing the need for equipment availability 

with the necessity of minimizing downtime and 

disruptions (Mao et al., 2021)(Converso et al., 

2023). Deep reinforcement learning (DRL) finds 

application in the maintenance phase of 

manufacturing systems (Li et al., 2023) 

(Marchesano et al., 2021) (Marchesano, Guizzi, et 

al., 2022). General maintenance activities can be 

classified into reactive, preventive, and predictive 

maintenance based on the timing of maintenance 

(Paz and Leigh, 1994). DRL helps improve 

productivity, flexibility, and adaptability and 

reduces human labour in these activities (Waubert 

de Puiseau, Meyes and Meisen, 2022). 

In reactive maintenance, uncertainty such as the 

type and condition of returned products for repair 

exists (Nunes, Santos and Rocha, 2023). To 

address the resulting high volatility in reactive 

maintenance, scholars (Wurster et al., 2022)(Mao 

et al., 2022) have used Petri-Net to transform 

disassembly sequence planning into DRL-solvable 

Markov Decision Processes (MDPs).  

DRL has also been applied in preventive 

maintenance policies design and optimization to 

improve production system performance (Su et al., 

2022). With the integration of the Internet of 

Things (IoT), real-time production data can be 

collected and fed back to the DRL system, 

allowing for continuous maintenance policy 

optimization and better decision-making (Usuga 

Cadavid et al., 2020). 

In addition to production systems, DRL-based 

maintenance of tools plays a significant role in 

ensuring machining quality and improving the 

productivity of automatic systems (Valet et al., 

2022). For instance, DRL algorithms have been 

combined with convolutional neural networks 

(CNNs) and improved actor-critic algorithms for 

bearing and tool fault recognition while transfer 

learning-based DRL methods have been integrated 

into Long Short-Term Memory (LSTM) networks 

to predict tool wear and remaining useful life 

(Wang et al., 2020) .  
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In their literature review, Panzer et al. (Panzer and 

Bender, 2021) found that DRL was more effective 

than other maintenance strategies in reducing 

average maintenance costs for multi-component 

systems. Compared to a run-to-failure strategy, the 

DRL algorithm reduced maintenance costs by 

approximately 20%, 7% for an age-dependent 

strategy, and 5% for an opportunistic maintenance 

strategy. The approach considers 

interdependencies between multiple components 

with competing failure probabilities and avoids the 

static and ineffective maintenance limits of 

conventional methods in large-scale systems. 

Furthermore, DRL was able to reduce maintenance 

costs without requiring experience-based or 

predefined thresholds. Finally, in their paper, 

Panzer et al. (Panzer, Bender and Gronau, 2022) 

proposed a list of additional maintenance-related 

publications of DRL in recent years.  

Overall, recent publications on DRL in 

maintenance-related fields have shown the 

potential for the approach to be more effective and 

efficient than conventional methods (Kosanoglu, 

Atmis and Turan, 2022). 

The objective of this study is to present a novel 

approach that integrates a simulation tool and a 

DRL algorithm for the purpose of effective 

scheduling and planning of maintenance events in 

a production line flow shop. This integrated 

framework combines the advantages of simulation 

techniques with the intelligent decision-making 

capabilities of DRL, aiming to optimize the 

maintenance process and enhance overall 

productivity. By leveraging this comprehensive 

approach (Marchesano, Staiano, et al., 2022), the 

proposed methodology aims to improve the 

efficiency and effectiveness of maintenance 

operations in a production line flow shop 

environment. 

II. PROPOSED APPROACH 

The proposed methodology introduces an 

integrated simulation tool and Deep Reinforcement 

Learning (DRL) algorithm to facilitate efficient 

scheduling and planning of maintenance events in 

a production line Flow Shop setting. The integrated 

simulation tool provides a virtual environment that 

accurately replicates the production line Flow 

Shop, allowing for detailed modeling and 

simulation of machine operations, job flows, and 

maintenance events (Huang, Chang and Arinez, 

2020). By capturing the dynamic nature and 

intricate complexities of the system, the simulation 

tool enables the evaluation of diverse maintenance 

strategies and their impact on overall performance 

(Akl et al., 2022). 

At the heart of the proposed approach lies the DRL 

algorithm, which serves as the intelligent decision-

making component. The DRL algorithm operates 

through the interaction between an agent and the 

simulated environment, learning optimal policies 

through iterative trial and error. By considering 

factors such as machine failure probabilities, job 

priorities, and scheduling constraints, the agent 

aims to maximize cumulative rewards while 

making informed decisions regarding maintenance 

scheduling within the production line flow shop. 

The integrated simulation tool and DRL algorithm 

offer several notable advantages. Firstly, the virtual 

simulation environment allows for the assessment 

of different maintenance strategies without the 

need for disrupting actual production operations. 

This mitigates potential risks and costs associated 

with real-world experimentation. Secondly, the 

methodology provides a platform for evaluating 

the effectiveness of various maintenance 

scheduling policies under diverse scenarios, 

facilitating the identification of optimal strategies 

for enhancing production efficiency and 

minimizing downtime. Lastly, the integration of 

simulation and DRL enables the development of 

adaptive maintenance planning systems that can 

dynamically adjust to changes in machine failure 

patterns, job priorities, and production demands. 

A. Proximal Policy Optimization 

The Proximal Policy Optimization (PPO) 

algorithm, introduced by Schulman et al. 

(Schulman et al., 2017), is a widely used 

reinforcement learning (RL) algorithm. It belongs 

to the Policy Gradient family of methods and 

follows a two-step process involving data 

collection and optimization of a "surrogate" 

objective function using stochastic gradient ascent. 

Unlike model-based RL algorithms, PPO learns the 

policy directly without constructing an explicit 

model of the environment. To ensure learning 

stability, the algorithm incorporates Trust Region 

Optimization, which limits the size of policy 

updates. PPO also employs a Clipping Objective 

Function to restrict the magnitude of policy 

updates, preventing instability during training.  

The main steps of the PPO algorithm can be 

summarized as follows: 

1. Collect trajectories: The agent interacts 

with the environment to gather trajectories, 
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which consist of sequences of states, 

actions, and rewards. 

2. Compute advantages: The value network is 

utilized to calculate the advantage of each 

state-action pair. The advantage represents 

the difference between the expected 

reward and the value of the current state. 

3. Update policy: The policy network is 

updated using the PPO loss function, 

which strikes a balance between exploring 

new actions and exploiting known actions. 

4. Update value network: The value network 

is updated by minimizing the mean 

squared error between the expected reward 

and the value of the current state. 

5. Repeat: Steps 1 to 4 are iterated until the 

agent has learned a policy that maximizes 

the reward signal. 

By following these steps, the PPO algorithm 

iteratively improves the policy by adjusting the 

parameters of the policy network and the value 

network based on the collected trajectories and 

their associated advantages. 

III. PROBLEM FORMULATION 

The proposed methodology entails employing the 

AnyLogic simulation software to model the 

production line, thereby facilitating the simulation 

of line operations as well as corrective and 

preventive maintenance events (Figure 1). This 

software provides the capability to configure 

essential parameters for the Reinforcement 

Learning Experiment. Subsequently, the 

configured model will be exported and 

implemented in Python, leveraging the ALPyne 

library. Following the simulation setup, an RL 

algorithm (PPO) will be developed in Python to 

train an agent on a single-machine system, aiming 

to derive an optimal policy. Subsequently, this 

policy will be evaluated and tested on a Flow-Shop 

system consisting of 5 machines. The Anylogic 

environment facilitates the creation of a model 

specifically designed for addressing the Flow Shop 

Scheduling Problem (FSSP), enabling 

experimentation with various configurations of the 

problem. Consequently, the Anylogic model serves 

as a valuable framework for investigating and 

analysing different Flow Shop scenarios.  

The hypothesis of the problem are: 

• Number of jobs to be processed: 50;  

• Number machines: Single machine and 5-

machines Flow Shop; 

• Processing Times: triangular distribution 

(min,max,mode) (20,100,50); 

• Corrective Maintenance Time: 51 min; 

• Preventive Maintenance Time: 17 min; 

• Weibull scale parameter α: 450; 

• Weibull scale parameter β: 1.5. 

 

Figure 1 The simulation model. 

In these cases, jobs are processed using the 

Shortest Processing Time (SPT) rule.  

In the following paragraph, we will elucidate the 

formulation of the DRL approach. We will begin 

by providing an overview of the selected software 

used for implementing the PPO algorithm. 

Subsequently, we present the system's 

characteristics in terms of state observations, 

available actions, and the reward structure. 

IV. DRL CONFIGURATION 

Regarding the Reinforcement Learning aspect, the 

problem formulation and setup were implemented 

within Anylogic through a dedicated section within 

the software (RLExperiment). This section allows 

for the definition of observation, action, and 

configuration parameters. The resulting experiment 

will then be exported and implemented in the 

ALPyne library, ensuring seamless integration 

between Anylogic and the subsequent 

reinforcement learning pipeline. 

ALPyne serves as a Python library specifically 

developed to establish a connection between 

AnyLogic and Python. Its primary objective is to 

facilitate the interactive execution of RL models 

exported from AnyLogic. As AnyLogic does not 

possess native RL algorithms, ALPyne acts as a 

vital tool for running RL experiments seamlessly. 

Consequently, the execution of RL experiments 

within the AnyLogic environment is not directly 

supported, necessitating the use of a compatible 

platform like ALPyne for conducting RL-related 

tasks. The initial phase of utilizing ALPyne 

involves configuring the AnyLogic model by 
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providing the necessary information in the 

designated sections pertaining to Configuration, 

Observation, Action, and stopping conditions 

within the Reinforcement Learning experiment 

module. Additionally, the takeAction method 

should be invoked when the agent requires making 

decisions during the simulation. Once the model is 

appropriately configured, it needs to be exported to 

initiate the training phase. It is important to note 

that the training phase takes place on a distinct 

platform independent of AnyLogic. Following the 

model export, the subsequent step entails setting up 

the training phase using ALPyne. This process 

involves importing essential libraries and 

configuring the observation and action spaces. The 

libraries that need to be imported include 

ALPyneClient, ModelRun, Observation, Action, 

and BaseALPyneEnv. ALPyneClient is responsible 

for initializing the ALPyne application, while 

ModelRun represents an individual simulation run 

within the ALPyneClient object. Observation is a 

read-only object that represents an observation 

obtained from the simulator, and Action is an 

object that represents an action to be sent to the 

simulator. Additionally, the BaseALPyneEnv class 

is imported to simplify the usage of ALPyne in 

conjunction with Gym environments. 

When integrating ALPyne with Gym 

environments, it is essential to define the 

observation and action spaces, taking into account 

the appropriate data types that correspond to the 

configurations utilized in the AnyLogic model. 

Subsequently, the code needs to handle the 

conversion of Observation objects to align with the 

data type specified by the observation space. 

Similarly, the action received from the RL library 

should be transformed into an Action object. 

Furthermore, the code should calculate the 

numerical reward based on the observation 

recorded after executing an action. In this 

particular instance, the Observation space is 

represented as a Box type, which denotes a 

continuous n-dimensional space. Specifically, it 

encompasses a 5-dimensional space containing the 

following variables: 

• Failure Probability (FP); 

• The percentage of completed jobs at time t; 

• The ratio of the mean processing time to 

the sum of the processing time at time t 

and the time in corrective 

maintenance(CRt); 

• The ratio of the sum of the processing time 

at time t and the time in preventive 

maintenance to the mean processing time 

(pRt); 

• The ratio of the total processing time at 

time t to the sum of the total processing 

time, corrective time and preventive time 

at time t (TRt). 

While, the Action space is of type Discrete and has 

two possible values: 0 or 1, which correspond to no 

maintenance or maintenance, respectively. 

Finally, the reward function is defined. 

Specifically, the method calculates the reward for 

the agent, based on the observation received from 

the simulation, as: 

rewardt = FP · CRt · pRt · TRt 

The objective of the learning agent is to strike a 

balance between minimizing the Makespan (the 

total time required for all jobs to be completed) 

and the number of maintenance activities, 

including both corrective and preventive tasks. To 

maximize the product's performance, which is the 

primary objective of the learning agent, the 

individual ratios CRt, pRt, and TRt need to be 

optimized. Maximizing CRt involves minimizing 

the time required for a single corrective 

maintenance task, which corresponds to the 

occurrence of failures. Conversely, maximizing pRt 

requires maximizing the duration of a single 

preventive maintenance task. Although this may 

initially seem contradictory, it is counterbalanced 

by the maximization of TRt, which entails 

minimizing both the total time spent on corrective 

maintenance and the total time spent on preventive 

maintenance simultaneously. The significance of 

this optimization is further influenced by the 

failure probability (FP).  

V. PERFORMANCE COMPARISON 

In this section, we present the obtained results that 

validate the policy implemented. The assessment 

of policy effectiveness was conducted based on the 

number of preventive maintenance actions, the 

occurrence of corrective maintenance (i.e., 

breakdowns), and the overall Makespan. The 

Makespan refers to the total duration or time 

required to complete a set of tasks within a given 

process. It is a widely used performance metric in 

scheduling, optimization, and production planning 

to evaluate process or system efficiency and 

effectiveness. 
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Additionally, the number of preventive 

maintenance actions executed by the learning agent 

was compared with the optimal maintenance 

number calculated using the empirical formula 

proposed by Branda et al. (Branda et al., 2021a, 

2021b), as discussed in their published work. 

Subsequently, the resulting policy was tested on 

the same single-machine system, yielding notable 

outcomes in terms of achieving a balanced 

approach between maintenance actions and 

breakdown occurrences. Specifically, across 20 

test replications with randomized seeds, the 

simulations exhibited an average of 6.3 

maintenance tasks and 9.05 breakdowns, with a 

total Makespan of approximately 3312.5 minutes. 

It is worth noting that the average number of 

maintenance tasks performed by the learning agent 

was lower than the optimal number determined by 

the empirical formula (resulting 7 with the 

hypothesis of this study) proposed by Branda et al. 

(Branda et al., 2021b). 

Figure 2 displays how the maintenance tasks and 

the breakdowns are distributed over time. 

 

Figure 2. The system behaviour in terms of the number of 
maintenance tasks and breakdowns depends on the failure probability 

across the time steps. 

The action is executed once a job completes its 

operation on the machine. In Figure 2, the action is 

represented by a hammer symbol when a failure 

occurs, and it is visually highlighted in red when 

the DRL system determines a preventive 

maintenance activity. Since the job scheduling in 

this system follows the shortest processing time 

(SPT) rule, a higher number of maintenance tasks 

are frequently performed at a higher failure 

probability rate. These maintenance tasks tend to 

accumulate towards the end of the simulation time 

period. The breakdown events are relatively evenly 

distributed across the time steps, indicating an area 

for potential improvement in the system. However, 

it is worth noting that this maintenance schedule 

does not significantly affect the Makespan, the 

total time required to complete all jobs. As a result, 

this scheduling strategy ensures a balanced 

distribution of maintenance activities throughout 

the various process stages, thereby minimizing 

their impact on production time and ensuring 

optimal efficiency. Subsequently, the effectiveness 

of the policy generated based on the best reward 

was evaluated through simulation. In this 

evaluation, the policy was tested on a configuration 

consisting of five identical machines, characterized 

by identical Weibull parameters. 

TABLE I. COMPARISON OF THE RESULTS OF THE MEAN VALUES 

System Mean 

Makespan 

Number of 

Breakdowns 

Number of 

maintenance 

tasks 

Single 

Machine 
3312,5 9,05 6,3 

Flow 

Shop 
3901,15 43,75 24,8 

 

replication M1 M2 M3 M4 M5 FlowShop

1 -4 -2 0 -4 0 -10

2 -6 -3 -2 -1 -2 -14

3 -5 -5 -2 0 3 -9

4 -6 -3 0 -1 -3 -13

5 0 -4 -3 -2 1 -8

6 -4 -1 0 1 -2 -6

7 -1 -3 -3 -2 5 -4

8 -1 -4 -1 -2 -1 -9

9 -1 -4 -2 -4 -1 -12

10 -4 0 -1 -1 -2 -8

11 -3 -4 -3 -3 -3 -16

12 -5 -4 -5 0 -2 -16

13 -3 0 0 -3 4 -2

14 -4 -1 -2 -2 -3 -12

15 -3 -2 -4 0 0 -9

16 -5 -3 -4 -1 -4 -17

17 -1 -6 -1 -5 -1 -14

18 -3 -5 -2 -3 3 -10

19 -2 -3 -2 -1 0 -8

20 -4 -2 -5 -4 -4 -19  

Figure 3. The deviation between the number of maintenance tasks 

done and the optimal value derived from the paper's formula (Branda 

et al., 2021b). 

As in the previous experiments, a total of 20 

replications were conducted to show how the 

metrics considered varied. Specifically, the optimal 

number of maintenance actions for each machine 

and the optimal number in total, considering the 

whole system, were compared with the actual 

number of maintenance actions, as well as the 

number of breakdowns and the Makespan. 

The results of all 20 replications consistently 

showed that the total number of actual 

maintenance actions was lower than the total 

optimal number (Figure 3). Furthermore, the total 

Makespan did not increase significantly compared 

to the single-machine case (as shown in Table I). 
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VI. CONCLUSION 

The present study adopts an innovative approach to 

address the challenge of scheduling maintenance 

tasks in a Flow Shop environment. Traditional 

tools commonly used for maintenance scheduling 

have proven to be inadequate in addressing this 

complex decision problem, necessitating the 

exploration of new methodologies. 

Deep reinforcement learning (DRL) emerges as a 

promising avenue for optimizing maintenance 

planning and scheduling in multi-machine 

manufacturing systems. This study showcases the 

obtained findings, with a particular focus on the 

ability to schedule a reduced number of 

maintenance operations compared to the ideal 

solution. These results underscore the effectiveness 

and potential benefits of the proposed method. 

Future investigations will entail a more 

comprehensive experimental plan aimed at 

enhancing our understanding and implementation 

of maintenance planning and scheduling in multi-

machine production systems. The research project 

aims to explore the adaptability and efficacy of the 

proposed approach in more intricate production 

contexts, incorporating a multi-product production 

system and accounting for different levels of 

stochasticity within the model. Additionally, 

resource allocation to maintenance activities will 

be considered, encompassing the identification of 

manpower, equipment, and other necessary 

resources. By incorporating resource constraints, 

the study endeavors to establish a more practical 

and realistic maintenance planning strategy. 

Through these additional experiments, the project 

aims to test and refine the proposed integrated 

approach for maintenance planning and scheduling 

in multi-machine production systems. The 

outcomes of these trials will contribute to 

advancing our comprehension and application of 

DRL learning techniques in real-world production 

scenarios, ultimately enhancing operational 

efficiency and productivity. 
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