
XXVIII Summer School “Francesco Turco” – « Blue, Resilient & Sustainable Supply Chain »

 Assessing maintenance planning and

scheduling using Deep Reinforcement

Learning

Maria Grazia Marchesano a) , Guido Guizzi a), Giuseppe Converso a) and Liberatina Carmela Santillo a)

a. Università degli Studi di Napoli “Federico II”, Dipartimento di Ingegneria Chimica, dei Materiali e della
Produzione Industriale, P.le Tecchio, 80, 80125- Napoli- Italy

(mariagrazia.marchesano@unina.it, g.guizzi@unina.it, giuseppe.converso@unina.it, santillo@unina.it)

Abstract: Maintenance scheduling is critical in many industries, and recent advances in Deep Reinforcement

Learning (DRL) have shown that it can optimise scheduling decisions in complex and dynamic contexts.

Traditional methods of maintenance scheduling frequently confront obstacles, making DRL an appealing

alternative. This study presents a novel approach for autonomously determining optimal maintenance scheduling

decisions in production systems that blends a simulation-based model with a DRL agent. The learning agent

makes intelligent judgements based on the chance of failure and machine availability through trial and error. The

setup of the DRL setting, particularly the reward function, has a considerable impact on the approach's

performance. The proposed hybrid simulation-based and DRL methodology outperforms existing heuristic

methods in rigorous evaluation, demonstrating its promise for efficient and effective maintenance planning and

scheduling. This work sets the way for better system reliability and productivity in companies that rely on

complex systems.

Keywords: Industry 4.0, Maintenance, Deep Reinforcement Learning, PPO.

I. INTRODUCTION

Maintenance scheduling plays a critical role in

numerous industries, as it directly impacts the

operational efficiency, reliability, and cost-

effectiveness of equipment and systems (Rai et al.,

2021)(Grassi et al., 2023). Effective maintenance

scheduling ensures that maintenance activities are

strategically planned and executed at the right

time, balancing the need for equipment availability

with the necessity of minimizing downtime and

disruptions (Mao et al., 2021)(Converso et al.,

2023). Deep reinforcement learning (DRL) finds

application in the maintenance phase of

manufacturing systems (Li et al., 2023)

(Marchesano et al., 2021) (Marchesano, Guizzi, et

al., 2022). General maintenance activities can be

classified into reactive, preventive, and predictive

maintenance based on the timing of maintenance

(Paz and Leigh, 1994). DRL helps improve

productivity, flexibility, and adaptability and

reduces human labour in these activities (Waubert

de Puiseau, Meyes and Meisen, 2022).

In reactive maintenance, uncertainty such as the

type and condition of returned products for repair

exists (Nunes, Santos and Rocha, 2023). To

address the resulting high volatility in reactive

maintenance, scholars (Wurster et al., 2022)(Mao

et al., 2022) have used Petri-Net to transform

disassembly sequence planning into DRL-solvable

Markov Decision Processes (MDPs).

DRL has also been applied in preventive

maintenance policies design and optimization to

improve production system performance (Su et al.,

2022). With the integration of the Internet of

Things (IoT), real-time production data can be

collected and fed back to the DRL system,

allowing for continuous maintenance policy

optimization and better decision-making (Usuga

Cadavid et al., 2020).

In addition to production systems, DRL-based

maintenance of tools plays a significant role in

ensuring machining quality and improving the

productivity of automatic systems (Valet et al.,

2022). For instance, DRL algorithms have been

combined with convolutional neural networks

(CNNs) and improved actor-critic algorithms for

bearing and tool fault recognition while transfer

learning-based DRL methods have been integrated

into Long Short-Term Memory (LSTM) networks

to predict tool wear and remaining useful life

(Wang et al., 2020) .

mailto:g.guizzi@unina.it

XXVIII Summer School “Francesco Turco” – « Blue, Resilient & Sustainable Supply Chain »

In their literature review, Panzer et al. (Panzer and

Bender, 2021) found that DRL was more effective

than other maintenance strategies in reducing

average maintenance costs for multi-component

systems. Compared to a run-to-failure strategy, the

DRL algorithm reduced maintenance costs by

approximately 20%, 7% for an age-dependent

strategy, and 5% for an opportunistic maintenance

strategy. The approach considers

interdependencies between multiple components

with competing failure probabilities and avoids the

static and ineffective maintenance limits of

conventional methods in large-scale systems.

Furthermore, DRL was able to reduce maintenance

costs without requiring experience-based or

predefined thresholds. Finally, in their paper,

Panzer et al. (Panzer, Bender and Gronau, 2022)

proposed a list of additional maintenance-related

publications of DRL in recent years.

Overall, recent publications on DRL in

maintenance-related fields have shown the

potential for the approach to be more effective and

efficient than conventional methods (Kosanoglu,

Atmis and Turan, 2022).

The objective of this study is to present a novel

approach that integrates a simulation tool and a

DRL algorithm for the purpose of effective

scheduling and planning of maintenance events in

a production line flow shop. This integrated

framework combines the advantages of simulation

techniques with the intelligent decision-making

capabilities of DRL, aiming to optimize the

maintenance process and enhance overall

productivity. By leveraging this comprehensive

approach (Marchesano, Staiano, et al., 2022), the

proposed methodology aims to improve the

efficiency and effectiveness of maintenance

operations in a production line flow shop

environment.

II. PROPOSED APPROACH

The proposed methodology introduces an

integrated simulation tool and Deep Reinforcement

Learning (DRL) algorithm to facilitate efficient

scheduling and planning of maintenance events in

a production line Flow Shop setting. The integrated

simulation tool provides a virtual environment that

accurately replicates the production line Flow

Shop, allowing for detailed modeling and

simulation of machine operations, job flows, and

maintenance events (Huang, Chang and Arinez,

2020). By capturing the dynamic nature and

intricate complexities of the system, the simulation

tool enables the evaluation of diverse maintenance

strategies and their impact on overall performance

(Akl et al., 2022).

At the heart of the proposed approach lies the DRL

algorithm, which serves as the intelligent decision-

making component. The DRL algorithm operates

through the interaction between an agent and the

simulated environment, learning optimal policies

through iterative trial and error. By considering

factors such as machine failure probabilities, job

priorities, and scheduling constraints, the agent

aims to maximize cumulative rewards while

making informed decisions regarding maintenance

scheduling within the production line flow shop.

The integrated simulation tool and DRL algorithm

offer several notable advantages. Firstly, the virtual

simulation environment allows for the assessment

of different maintenance strategies without the

need for disrupting actual production operations.

This mitigates potential risks and costs associated

with real-world experimentation. Secondly, the

methodology provides a platform for evaluating

the effectiveness of various maintenance

scheduling policies under diverse scenarios,

facilitating the identification of optimal strategies

for enhancing production efficiency and

minimizing downtime. Lastly, the integration of

simulation and DRL enables the development of

adaptive maintenance planning systems that can

dynamically adjust to changes in machine failure

patterns, job priorities, and production demands.

A. Proximal Policy Optimization

The Proximal Policy Optimization (PPO)

algorithm, introduced by Schulman et al.

(Schulman et al., 2017), is a widely used

reinforcement learning (RL) algorithm. It belongs

to the Policy Gradient family of methods and

follows a two-step process involving data

collection and optimization of a "surrogate"

objective function using stochastic gradient ascent.

Unlike model-based RL algorithms, PPO learns the

policy directly without constructing an explicit

model of the environment. To ensure learning

stability, the algorithm incorporates Trust Region

Optimization, which limits the size of policy

updates. PPO also employs a Clipping Objective

Function to restrict the magnitude of policy

updates, preventing instability during training.

The main steps of the PPO algorithm can be

summarized as follows:

1. Collect trajectories: The agent interacts

with the environment to gather trajectories,

XXVIII Summer School “Francesco Turco” – « Blue, Resilient & Sustainable Supply Chain »

which consist of sequences of states,

actions, and rewards.

2. Compute advantages: The value network is

utilized to calculate the advantage of each

state-action pair. The advantage represents

the difference between the expected

reward and the value of the current state.

3. Update policy: The policy network is

updated using the PPO loss function,

which strikes a balance between exploring

new actions and exploiting known actions.

4. Update value network: The value network

is updated by minimizing the mean

squared error between the expected reward

and the value of the current state.

5. Repeat: Steps 1 to 4 are iterated until the

agent has learned a policy that maximizes

the reward signal.

By following these steps, the PPO algorithm

iteratively improves the policy by adjusting the

parameters of the policy network and the value

network based on the collected trajectories and

their associated advantages.

III. PROBLEM FORMULATION

The proposed methodology entails employing the

AnyLogic simulation software to model the

production line, thereby facilitating the simulation

of line operations as well as corrective and

preventive maintenance events (Figure 1). This

software provides the capability to configure

essential parameters for the Reinforcement

Learning Experiment. Subsequently, the

configured model will be exported and

implemented in Python, leveraging the ALPyne

library. Following the simulation setup, an RL

algorithm (PPO) will be developed in Python to

train an agent on a single-machine system, aiming

to derive an optimal policy. Subsequently, this

policy will be evaluated and tested on a Flow-Shop

system consisting of 5 machines. The Anylogic

environment facilitates the creation of a model

specifically designed for addressing the Flow Shop

Scheduling Problem (FSSP), enabling

experimentation with various configurations of the

problem. Consequently, the Anylogic model serves

as a valuable framework for investigating and

analysing different Flow Shop scenarios.

The hypothesis of the problem are:

• Number of jobs to be processed: 50;

• Number machines: Single machine and 5-

machines Flow Shop;

• Processing Times: triangular distribution

(min,max,mode) (20,100,50);

• Corrective Maintenance Time: 51 min;

• Preventive Maintenance Time: 17 min;

• Weibull scale parameter α: 450;

• Weibull scale parameter β: 1.5.

Figure 1 The simulation model.

In these cases, jobs are processed using the

Shortest Processing Time (SPT) rule.

In the following paragraph, we will elucidate the

formulation of the DRL approach. We will begin

by providing an overview of the selected software

used for implementing the PPO algorithm.

Subsequently, we present the system's

characteristics in terms of state observations,

available actions, and the reward structure.

IV. DRL CONFIGURATION

Regarding the Reinforcement Learning aspect, the

problem formulation and setup were implemented

within Anylogic through a dedicated section within

the software (RLExperiment). This section allows

for the definition of observation, action, and

configuration parameters. The resulting experiment

will then be exported and implemented in the

ALPyne library, ensuring seamless integration

between Anylogic and the subsequent

reinforcement learning pipeline.

ALPyne serves as a Python library specifically

developed to establish a connection between

AnyLogic and Python. Its primary objective is to

facilitate the interactive execution of RL models

exported from AnyLogic. As AnyLogic does not

possess native RL algorithms, ALPyne acts as a

vital tool for running RL experiments seamlessly.

Consequently, the execution of RL experiments

within the AnyLogic environment is not directly

supported, necessitating the use of a compatible

platform like ALPyne for conducting RL-related

tasks. The initial phase of utilizing ALPyne

involves configuring the AnyLogic model by

XXVIII Summer School “Francesco Turco” – « Blue, Resilient & Sustainable Supply Chain »

providing the necessary information in the

designated sections pertaining to Configuration,

Observation, Action, and stopping conditions

within the Reinforcement Learning experiment

module. Additionally, the takeAction method

should be invoked when the agent requires making

decisions during the simulation. Once the model is

appropriately configured, it needs to be exported to

initiate the training phase. It is important to note

that the training phase takes place on a distinct

platform independent of AnyLogic. Following the

model export, the subsequent step entails setting up

the training phase using ALPyne. This process

involves importing essential libraries and

configuring the observation and action spaces. The

libraries that need to be imported include

ALPyneClient, ModelRun, Observation, Action,

and BaseALPyneEnv. ALPyneClient is responsible

for initializing the ALPyne application, while

ModelRun represents an individual simulation run

within the ALPyneClient object. Observation is a

read-only object that represents an observation

obtained from the simulator, and Action is an

object that represents an action to be sent to the

simulator. Additionally, the BaseALPyneEnv class

is imported to simplify the usage of ALPyne in

conjunction with Gym environments.

When integrating ALPyne with Gym

environments, it is essential to define the

observation and action spaces, taking into account

the appropriate data types that correspond to the

configurations utilized in the AnyLogic model.

Subsequently, the code needs to handle the

conversion of Observation objects to align with the

data type specified by the observation space.

Similarly, the action received from the RL library

should be transformed into an Action object.

Furthermore, the code should calculate the

numerical reward based on the observation

recorded after executing an action. In this

particular instance, the Observation space is

represented as a Box type, which denotes a

continuous n-dimensional space. Specifically, it

encompasses a 5-dimensional space containing the

following variables:

• Failure Probability (FP);

• The percentage of completed jobs at time t;

• The ratio of the mean processing time to

the sum of the processing time at time t

and the time in corrective

maintenance(CRt);

• The ratio of the sum of the processing time

at time t and the time in preventive

maintenance to the mean processing time

(pRt);

• The ratio of the total processing time at

time t to the sum of the total processing

time, corrective time and preventive time

at time t (TRt).

While, the Action space is of type Discrete and has

two possible values: 0 or 1, which correspond to no

maintenance or maintenance, respectively.

Finally, the reward function is defined.

Specifically, the method calculates the reward for

the agent, based on the observation received from

the simulation, as:

rewardt = FP · CRt · pRt · TRt

The objective of the learning agent is to strike a

balance between minimizing the Makespan (the

total time required for all jobs to be completed)

and the number of maintenance activities,

including both corrective and preventive tasks. To

maximize the product's performance, which is the

primary objective of the learning agent, the

individual ratios CRt, pRt, and TRt need to be

optimized. Maximizing CRt involves minimizing

the time required for a single corrective

maintenance task, which corresponds to the

occurrence of failures. Conversely, maximizing pRt

requires maximizing the duration of a single

preventive maintenance task. Although this may

initially seem contradictory, it is counterbalanced

by the maximization of TRt, which entails

minimizing both the total time spent on corrective

maintenance and the total time spent on preventive

maintenance simultaneously. The significance of

this optimization is further influenced by the

failure probability (FP).

V. PERFORMANCE COMPARISON

In this section, we present the obtained results that

validate the policy implemented. The assessment

of policy effectiveness was conducted based on the

number of preventive maintenance actions, the

occurrence of corrective maintenance (i.e.,

breakdowns), and the overall Makespan. The

Makespan refers to the total duration or time

required to complete a set of tasks within a given

process. It is a widely used performance metric in

scheduling, optimization, and production planning

to evaluate process or system efficiency and

effectiveness.

XXVIII Summer School “Francesco Turco” – « Blue, Resilient & Sustainable Supply Chain »

Additionally, the number of preventive

maintenance actions executed by the learning agent

was compared with the optimal maintenance

number calculated using the empirical formula

proposed by Branda et al. (Branda et al., 2021a,

2021b), as discussed in their published work.

Subsequently, the resulting policy was tested on

the same single-machine system, yielding notable

outcomes in terms of achieving a balanced

approach between maintenance actions and

breakdown occurrences. Specifically, across 20

test replications with randomized seeds, the

simulations exhibited an average of 6.3

maintenance tasks and 9.05 breakdowns, with a

total Makespan of approximately 3312.5 minutes.

It is worth noting that the average number of

maintenance tasks performed by the learning agent

was lower than the optimal number determined by

the empirical formula (resulting 7 with the

hypothesis of this study) proposed by Branda et al.

(Branda et al., 2021b).

Figure 2 displays how the maintenance tasks and

the breakdowns are distributed over time.

Figure 2. The system behaviour in terms of the number of
maintenance tasks and breakdowns depends on the failure probability

across the time steps.

The action is executed once a job completes its

operation on the machine. In Figure 2, the action is

represented by a hammer symbol when a failure

occurs, and it is visually highlighted in red when

the DRL system determines a preventive

maintenance activity. Since the job scheduling in

this system follows the shortest processing time

(SPT) rule, a higher number of maintenance tasks

are frequently performed at a higher failure

probability rate. These maintenance tasks tend to

accumulate towards the end of the simulation time

period. The breakdown events are relatively evenly

distributed across the time steps, indicating an area

for potential improvement in the system. However,

it is worth noting that this maintenance schedule

does not significantly affect the Makespan, the

total time required to complete all jobs. As a result,

this scheduling strategy ensures a balanced

distribution of maintenance activities throughout

the various process stages, thereby minimizing

their impact on production time and ensuring

optimal efficiency. Subsequently, the effectiveness

of the policy generated based on the best reward

was evaluated through simulation. In this

evaluation, the policy was tested on a configuration

consisting of five identical machines, characterized

by identical Weibull parameters.

TABLE I. COMPARISON OF THE RESULTS OF THE MEAN VALUES

System Mean

Makespan

Number of

Breakdowns

Number of

maintenance

tasks

Single

Machine
3312,5 9,05 6,3

Flow

Shop
3901,15 43,75 24,8

replication M1 M2 M3 M4 M5 FlowShop

1 -4 -2 0 -4 0 -10

2 -6 -3 -2 -1 -2 -14

3 -5 -5 -2 0 3 -9

4 -6 -3 0 -1 -3 -13

5 0 -4 -3 -2 1 -8

6 -4 -1 0 1 -2 -6

7 -1 -3 -3 -2 5 -4

8 -1 -4 -1 -2 -1 -9

9 -1 -4 -2 -4 -1 -12

10 -4 0 -1 -1 -2 -8

11 -3 -4 -3 -3 -3 -16

12 -5 -4 -5 0 -2 -16

13 -3 0 0 -3 4 -2

14 -4 -1 -2 -2 -3 -12

15 -3 -2 -4 0 0 -9

16 -5 -3 -4 -1 -4 -17

17 -1 -6 -1 -5 -1 -14

18 -3 -5 -2 -3 3 -10

19 -2 -3 -2 -1 0 -8

20 -4 -2 -5 -4 -4 -19

Figure 3. The deviation between the number of maintenance tasks

done and the optimal value derived from the paper's formula (Branda

et al., 2021b).

As in the previous experiments, a total of 20

replications were conducted to show how the

metrics considered varied. Specifically, the optimal

number of maintenance actions for each machine

and the optimal number in total, considering the

whole system, were compared with the actual

number of maintenance actions, as well as the

number of breakdowns and the Makespan.

The results of all 20 replications consistently

showed that the total number of actual

maintenance actions was lower than the total

optimal number (Figure 3). Furthermore, the total

Makespan did not increase significantly compared

to the single-machine case (as shown in Table I).

XXVIII Summer School “Francesco Turco” – « Blue, Resilient & Sustainable Supply Chain »

VI. CONCLUSION

The present study adopts an innovative approach to

address the challenge of scheduling maintenance

tasks in a Flow Shop environment. Traditional

tools commonly used for maintenance scheduling

have proven to be inadequate in addressing this

complex decision problem, necessitating the

exploration of new methodologies.

Deep reinforcement learning (DRL) emerges as a

promising avenue for optimizing maintenance

planning and scheduling in multi-machine

manufacturing systems. This study showcases the

obtained findings, with a particular focus on the

ability to schedule a reduced number of

maintenance operations compared to the ideal

solution. These results underscore the effectiveness

and potential benefits of the proposed method.

Future investigations will entail a more

comprehensive experimental plan aimed at

enhancing our understanding and implementation

of maintenance planning and scheduling in multi-

machine production systems. The research project

aims to explore the adaptability and efficacy of the

proposed approach in more intricate production

contexts, incorporating a multi-product production

system and accounting for different levels of

stochasticity within the model. Additionally,

resource allocation to maintenance activities will

be considered, encompassing the identification of

manpower, equipment, and other necessary

resources. By incorporating resource constraints,

the study endeavors to establish a more practical

and realistic maintenance planning strategy.

Through these additional experiments, the project

aims to test and refine the proposed integrated

approach for maintenance planning and scheduling

in multi-machine production systems. The

outcomes of these trials will contribute to

advancing our comprehension and application of

DRL learning techniques in real-world production

scenarios, ultimately enhancing operational

efficiency and productivity.

VII. REFERENCES

[1] Akl, A. M. et al. (2022) ‘A Joint Optimization of Strategic

Workforce Planning and Preventive Maintenance
Scheduling: A Simulation–Optimization Approach’,

Reliability Engineering and System Safety, 219(November
2021), p. 108175. doi: 10.1016/j.ress.2021.108175.

[2] Branda, A. et al. (2021a) ‘Dataset of metaheuristics for the

flow shop scheduling problem with maintenance activities
integrated’, Data in Brief, 36, p. 106985. doi:

10.1016/j.dib.2021.106985.

[3] Branda, A. et al. (2021b) ‘Metaheuristics for the flow shop
scheduling problem with maintenance activities

integrated’, Computers and Industrial Engineering,

151(November 2020), p. 106989. doi:

10.1016/j.cie.2020.106989.

[4] Converso, G. et al. (2023) ‘Predicting Failure Probability

in Industry 4.0 Production Systems: A Workload-Based
Prognostic Model for Maintenance Planning’, Applied

Sciences (Switzerland), 13(3). doi: 10.3390/app13031938.

[5] Grassi, A. et al. (2023) ‘A Genetic-Algorithm-Based
Approach for Optimizing Tool Utilization and Makespan

in FMS Scheduling’, Journal of Manufacturing and

Materials Processing, 7(2). doi: 10.3390/jmmp7020075.
[6] Huang, J., Chang, Q. and Arinez, J. (2020) ‘Deep

reinforcement learning based preventive maintenance

policy for serial production lines’, Expert Systems with
Applications, 160, p. 113701. doi:

10.1016/j.eswa.2020.113701.

[7] Kosanoglu, F., Atmis, M. and Turan, H. H. (2022) ‘A deep
reinforcement learning assisted simulated annealing

algorithm for a maintenance planning problem’, Annals of

Operations Research. doi: 10.1007/s10479-022-04612-8.
[8] Li, C. et al. (2023) ‘Deep reinforcement learning in smart

manufacturing: A review and prospects’, CIRP Journal of

Manufacturing Science and Technology, 40, pp. 75–101.
doi: 10.1016/j.cirpj.2022.11.003.

[9] Mao, J. Y. et al. (2022) ‘A hash map-based memetic

algorithm for the distributed permutation flowshop
scheduling problem with preventive maintenance to

minimize total flowtime’, Knowledge-Based Systems, 242,

p. 108413. doi: 10.1016/j.knosys.2022.108413.
[10] Mao, J. yang et al. (2021) ‘An effective multi-start iterated

greedy algorithm to minimize makespan for the distributed

permutation flowshop scheduling problem with preventive
maintenance’, Expert Systems with Applications,

169(December 2020), p. 114495. doi:

10.1016/j.eswa.2020.114495.
[11] Marchesano, M. G. et al. (2021) ‘A deep reinforcement

learning approach for the throughput control of a flow-

shop production system’, IFAC-PapersOnLine, 54(1), pp.
61–66. doi: 10.1016/j.ifacol.2021.08.006.

[12] Marchesano, M. G., Staiano, L., et al. (2022) ‘Deep

Reinforcement Learning Approach for Maintenance
Planning in a Flow-Shop Scheduling Problem’, in

Frontiers in Artificial Intelligence and Applications.

[13] Marchesano, M. G., Guizzi, G., et al. (2022) ‘Dynamic
scheduling of a due date constrained flow shop with Deep

Reinforcement Learning’, IFAC-PapersOnLine, 55(10),

pp. 2932–2937. doi: 10.1016/j.ifacol.2022.10.177.
[14] Nunes, P., Santos, J. and Rocha, E. (2023) ‘Challenges in

predictive maintenance – A review’, CIRP Journal of

Manufacturing Science and Technology, 40, pp. 53–67.
doi: 10.1016/j.cirpj.2022.11.004.

[15] Panzer, M. and Bender, B. (2021) ‘Deep reinforcement

learning in production systems: a systematic literature
review’, International Journal of Production Research.

doi: 10.1080/00207543.2021.1973138.
[16] Panzer, M., Bender, B. and Gronau, N. (2022) ‘Neural

agent-based production planning and control: An

architectural review’, Journal of Manufacturing Systems,
65(November), pp. 743–766. doi:

10.1016/j.jmsy.2022.10.019.

[17] Paz, N. M. and Leigh, W. (1994) ‘Maintenance

Scheduling: Issues, Results and Research Needs’,

International Journal of Operations & Production

Management, 14(8), pp. 47–69. doi:
10.1108/01443579410067135.

[18] Rai, R. et al. (2021) ‘Machine learning in manufacturing

and industry 4.0 applications’, International Journal of
Production Research, 59(16), pp. 4773–4778. doi:

10.1080/00207543.2021.1956675.

[19] Schulman, J. et al. (2017) ‘Proximal Policy Optimization
Algorithms’, pp. 1–12. Available at:

http://arxiv.org/abs/1707.06347.

[20] Su, J. et al. (2022) ‘Deep multi-agent reinforcement
learning for multi-level preventive maintenance in

manufacturing systems[Formula presented]’, Expert

Systems with Applications, 192(November 2021), p.
116323. doi: 10.1016/j.eswa.2021.116323.

[21] Usuga Cadavid, J. P. et al. (2020) ‘Machine learning

XXVIII Summer School “Francesco Turco” – « Blue, Resilient & Sustainable Supply Chain »

applied in production planning and control: a state-of-the-

art in the era of industry 4.0’, Journal of Intelligent

Manufacturing. Springer, pp. 1531–1558. doi:
10.1007/s10845-019-01531-7.

[22] Valet, A. et al. (2022) ‘Opportunistic maintenance

scheduling with deep reinforcement learning’, Journal of
Manufacturing Systems, 64(March), pp. 518–534. doi:

10.1016/j.jmsy.2022.07.016.

[23] Wang, Z. et al. (2020) ‘Performance degradation
assessment of rolling bearing based on convolutional

neural network and deep long-short term memory

network’, International Journal of Production Research,
58(13), pp. 3931–3943. doi:

10.1080/00207543.2019.1636325.

[24] Waubert de Puiseau, C., Meyes, R. and Meisen, T. (2022)
‘On reliability of reinforcement learning based production

scheduling systems: a comparative survey’, Journal of

Intelligent Manufacturing, 33(4), pp. 911–927. doi:
10.1007/s10845-022-01915-2.

[25] Wurster, M. et al. (2022) ‘Modelling and condition-based

control of a flexible and hybrid disassembly system with
manual and autonomous workstations using reinforcement

learning’, Journal of Intelligent Manufacturing, 33(2), pp.

575–591. doi: 10.1007/s10845-021-01863-3.

