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Abstract: Resilience is a performance measure that represents both the ability of a system to resist disruptive events 
and the ability to quickly recover the operational state by restoring the initial capacity. The added value of resilience 
analysis, compared to established vulnerability and risk analyses, is to describe the temporal evolution of the 
consequences of the disruptive event, by analysing the time-phased path of capacity recovery as well as consider 
medium-long term effects. While resilience is a widely discussed topic in the fields of utilities networks and civil 
infrastructures, only recently the concept has been applied to industrial systems such as production plants. Referring 
to this latter domain, in order to assess the state of the art and identify research gaps and topics deserving further 
investigation, a critical review of literature is carried out in this paper. In particular, the different conceptual steps 
involved in resilience estimation are separately addressed, namely disruptive event characterization, damage states 
assessment, scenarios generation, initial capacity loss estimation, time trend of capacity recovery, economic loss 
analysis, resilience quantification. For each step the suggested approaches are critically compared, highlighting their 
strengths and weaknesses. A morphological matrix approach is then used to classify the existing models and identify 
opportunities for developing more effective resilience modelling tools and methods. 
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1.Introduction 

The ability of a system to withstand unexpected disruptive 
events and quickly restore functionality can be defined as 
“Resilience”. The concept of resilience was introduced in 
the field of ecology, where resilience represents the ability 
of an ecosystem to survive, adapt and grow in the presence 
of unexpected changes. Later, the concept spread to many 
other disciplines, including psychology, and indeed, 
engineering. 

In this discipline there are already two tools to evaluate the 
behaviour of a system in the event of an unexpected 
disruptive event: vulnerability analysis and risk analysis. 
However, these tools are focused only on the first of the 
three characteristics described by resilience. Resilience is, in 
fact, characterized by three aspects, namely absorption 
capacity, adaptive capacity, and restorative capacity (Nan 
and Sansavini, 2016). The absorption capacity consists in 
the system's ability to reduce the impact and damage caused 
by disruptive events: this is also the goal of established 
vulnerability analysis and risk analysis. However, the added 
value of resilience analysis is that it also assesses the 
adaptive capacity, which consists in the ability of the system 
to adapt to the damage suffered, to reduce the negative 
consequences of the event on the functionality of the 
system, and the restorative capacity, which refers to 
system’s capability of rapidly recovering functionality. 

A schematic representation of temporal trend of system’s 
capacity following a disruptive event (occurring at time t0) 
is shown in fig. 1. One can observe the initial capacity loss 

CL = C(td) - C(t0) during time interval from t0 to td caused 
by the disruptive event. The capacity loss is reduced by the 
absorption capacity of the system. From time td to time tc a 
latency period occurs, in which the planning of recovery 
activities takes place. From time tc to time tr, recovery 
activities take place: in this phase both the adaptive 
capacity, and the restorative capacity play a role. Please note 
that final capacity may be less, equal or higher than initial 
capacity.  

 
Figure 1: Diagram of capacity vs time 

Of great importance in this last phase are the recovery 
duration and the trend of capacity during the recovery 
period. Given the above-described time trend of capacity 
some performance measure quantifying system resilience 
can be computed. In general, the lower the initial capacity 
loss, and the shorter the (tr – t0) interval the higher is 
resilience. Therefore, in order to properly compute system 
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resilience, it is critical to estimate in a precise manner the 
capacity recovery curve.  

Research on resilience computation for process and 
manufacturing plants is scarce and an agreed methodology 
has not yet been established. In this paper the approaches 
developed in the literature to determine the capacity 
recovery curve and compute resilience, with special 
emphasis on industrial plants, will be reviewed and critically 
appraised, in order to show strengths and weaknesses of 
existing methods and point out research gaps justifying 
future research work. To better compare the existing 
approaches, it was decided to decompose the main problem 
of calculating resilience into different subproblems, since 
for each of them a specific solution tool is needed. 
Subsequently a morphological matrix was constructed, to 
provide a taxonomy of all the identified approaches. 

The following work is structured as follows: section 2 
describes the adopted analysis methodology, paying 
particular attention to the decomposition into subproblems 
and the resulting structure of the morphological matrix. 
Section 3 analyses, for each of the subproblems, the 
approaches proposed in the reviewed literature, 
highlighting any strengths and limitations. Finally, in 
section 4, all the gaps identified are summed up, proposing 
improvement opportunities and identifying topics 
deserving further research. 

2.Methodology  

2.1 Papers selection criteria 

Research on industrial resilience literature was carried out 
mainly through scientific databases (Scopus, Web of 
Science and Science direct), and search engines such as 
ResearchGate and Google Scholar. More than 623 articles 
related to engineering resilience have been identified. Of 
these, only 43 have been selected and catalogued, as they 
are characterized by models applicable to the quantitative 
analysis of resilience of individual industrial plants. On the 
other hand, works focused on the resilience of networks, 
supply chains and infrastructures, which do not fit the case 
of industrial plants, due to their specificity, have been set 
aside. Focusing only on the issue of the calculation of 
resilience, 20 articles have been extracted from the set and 
used to build the morphological matrix (section 3.3). 
Among these, particular relevance is given to papers 
focusing specifically on industrial plants. However, papers 
not specifically focusing on industrial plants will also be 
included in the review in case the described approaches 
could be applied as well to industrial plants resilience 
estimation. 

2.2 Decomposition into subproblems 

Considering that, as described before, resilience calculation 
implies a sequence of conceptually distinct steps, and that 
the reviewed authors adopted widely different approaches 
and tools to carry out each step, it was decided to 
decompose the overall problem of resilience calculation 
into several “subproblems”. This decomposition was 
identified as an effective and functional way to compare the 
various approaches, as it allows to highlight step by step the 
strengths and weaknesses of the strategies of each paper 

and allows generation of novel solution strategies by 
rearranging the subproblems solution methods in a 
combinatorial manner. The identified subproblems are 
listed in fig.2. 

 
Figure 2: The subproblems of resilience calculation  

2.3 Morphological matrix  

For each of the subproblems identified, the models and 
conceptual approaches proposed in the selected literature 
were collected in a morphological matrix (Table 1). In 
engineering design and systems engineering a 
morphological matrix is a matrix showing all the 
alternatives available to perform a set of functions, so that 
the structure of a system can be determined by choosing a 
specific option for each single function. It should be noted 
that not all articles deal with every subproblem. This is a 
consequence of the scarcity of methods that address all 
phases of the calculation of resilience, while most of the 
time they focus only on partial aspects of the problem of 
calculation of resilience. 

3.Approaches of solutions to subproblems 

3.1 Disruptive event identification and 
characterization 

The first subproblem concerns the identification of the 
disruptive event that generates the loss of capacity in the 
system. The choice of the considered disruptive event is 
relevant as it can completely change the manner that 
resilience computation is carried out. A first difference is 
between events generating physical loss of systems 
components (i.e. a physical failure caused by an external or 
internal event) or only interruption of operations (i.e. 
interruption in the delivery of materials caused by failure of 
a supplier). Another distinction is between events treated 
as deterministic or random. A further remark is that 
internal equipment failures usually affect one equipment at 
a time, although the functional failure consequence may 
affect the entire system, while external events (i.e. natural 
hazards) may act as common mode failure affecting 
simultaneously several system elements. 

Some authors (Bristow and Hay, 2016; Caputo et al., 
2019b) neglect the definition of a causal event or the 
specific failure type, as they focus directly on the 
subsequent phases, i.e., on the definition of capacity loss 
and its economic implications starting from a 
predetermined initial damage scenario specifying the loss of 
a set of systems components. For this reason, despite being 
suitable for any disruptive event, they do not provide any 
contribution to the resolution of this subproblem. As for 
specific events, on the other hand, some of the works 
(Matelli and Goebel, 2018; Patriarca et al., 2021; Xi et al., 
2015), focus on the failure of a component. However, such 
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approaches typically considered one failure at a time, which 
represents a strong limitation to the model. 

The rest of the articles consider Na-Tech events, i.e. natural 
hazards triggering technological disaster. Usually this 
requires specifying a hazard curve representing the 
relationship between annual probability of occurrence of 
the event and its magnitude (i.e. annual probability of 
exceedance of a given intensity measure, such as Peak 
Ground Acceleration, PGA, in case of earthquakes). Some 
examples are hurricanes (Mahzarnia et al., 2020), floods 
(Argyroudis et al., 2020), earthquakes (Argyroudis et al., 
2020; Caputo and Paolacci, 2017; Caputo et al., 2019a; 

Ferrario and Zio, 2013; Kalemi et al., 2020; Mussini et al., 
2018; Singhal et al., 2020). The typical way of transforming 
Na-Tech events into damage to the system elements 
consists (see subsection 3.2) in tracing correlations between 
the magnitude of the harmful event, and the fragility of the 
elements. This approach is generalizable to any natural 
event (earthquakes, floods, hurricanes), maintaining the 
same structure based on the study of probability and 
magnitude of the disruptive event. The hazard curve 
approach can be even extended to events other than Na-
Tech ones, for example those deriving from man-made 
hazards. 

 

Table 1: Morphological matrix

 

3.2 Damage states assessment 

The main objective of this subproblem consists in 
determining the type and number of damage states used to 
characterize the level of damage sustained by any 
equipment, and in assigning to each unit the proper damage 
state on the basis of the occurred disruptive event. This is 
relevant as the damage state can influence both system 
capacity and the type and duration of recovery activities to 
be performed. Consequently, diversification into multiple 
damage states allows for more realistic and reliable 
calculations of residual capacity and activities and recovery 
times, which represent the input data in the calculation of 
resilience. 

 

A first classification is based on the assumption of a single 
damage state (usually implying total loss of the equipment, 
so that the unit can be either in undamaged or damaged 
states) or in the definition of multiple damage states 
implying different levels of loss of functionality. 

The first family of damage state assignment approaches is 
"arbitrarily assigned damage states". It includes models 
where the damage state of the equipment is arbitrarily 
assigned by the user instead of being determined by the 
intensity of the disruptive event or by any other manner 
(Bristow and Hay, 2016; Caputo et al., 2019b; Xi et al., 
2015). This often corresponds to models where the 
equipment state is binary (i.e. damaged or not) and the 
arbitrary assignment of the number of units being in 

Subproblems Approaches 

Disruptive event 
characterization 

Component failure 
(Matelli and Goebel, 2018; Patriarca et 

al., 2021; Xi et al., 2015) 

Generic 
(Bristow and Hay, 2016; 

Caputo et al., 2019b) 

Na-Tech 
(Argyroudis et al., 2020; Caputo and Paolacci, 2017; Caputo 

et al., 2019a; Ferrario and Zio, 2013; Kalemi et al., 2020 
Mahzarnia et al., 2020; Mussini et al., 2018; Singhal et al., 

2020) 

Damage states 
assessment 

Fragility curves 
(Argyroudis et al., 2020; Caputo and Paolacci, 2017; 

Caputo et al., 2019a; Ferrario and Zio, 2013; 
Kalemi et al., 2020; Mahzarnia et al., 2020; Mussini 

et al., 2018) 

Failure probability 
(Matelli and Goebel, 2018; Patriarca 

et al., 2021) 

Arbitrarily assigned damage states 
(Bristow and Hay, 2016; Caputo et al., 

2019b; Xi et al., 2015) 

Scenarios 
generation 

Monte Carlo Simulation 
(Caputo et al., 2019a; Ferrario and Zio, 

2013; Kalemi et al., 2020) 

Systematic generation 
of all possible scenarios 

(Caputo and Paolacci, 
2017; Caputo et al., 2019a) 

Arbitrary user-defined scenarios 
(Caputo and Paolacci, 2017; Caputo et al., 2019a, 2019b; 

Patriarca et al., 2021; Xi et al., 2015) 

Initial capacity 
loss estimation 

Fault tree 
(Ferrario and Zio, 

2013) 

Fixed capacity for each 
damage scenario 

(Matelli and Goebel, 2018; 
Patriarca et al., 2021) 

Bernoulli 
reliability 

model 
(Xi et al., 2015) 

Capacity Block Diagram 
(Caputo and Paolacci, 2017; Caputo 
et al., 2019a, 2019b; Kalemi et al., 

2020; Mussini et al., 2018) 

Discrete event 
simulation 

(Lohmer et al., 2020) 
 

Time trend of 
capacity recovery 

Activities network 
(Caputo and Paolacci, 2017; Caputo et 
al., 2019a, 2019b; Kalemi et al., 2020) 

Scheduled activities 
(Mussini et al., 2018; 
Patriarca et al., 2021) 

Fault tree 
(Ferrario and Zio, 2013) 

Predefined shape 
(Cimellaro et al., 2006; 

Singhal et al. 2020) 

Economic loss 
analysis 

Business interruption cost 
(Caputo and Paolacci, 2017; Caputo et al., 2019a, 
2019b; Kalemi et al., 2020; Lohmer et al., 2020) 

Repair cost 
(Caputo and Paolacci, 2017; Caputo 
et al., 2019a, 2019b; Kalemi et al., 

2020; Singhal et al., 2020) 

Expected annual loss 
(Kalemi et al., 2020; Mussini et al., 2018) 

Resilience 
quantification 

 
Eq. (2) 

(Argyroudis et al., 2020; Caputo et al., 2019b; 
Singhal et al., 2020) 

Eq. (3) 
(Zhao et al., 

2016) 

Eq. (4) 
(Kalemi et al., 2020) 

Eq. (5) 
(Caputo et al., 

2019a; Cincotta 
et al., 2019) 

Eq. (6) 
(Patriarca et al., 2021) 
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damaged state corresponds to the definition of the initial 
damage scenario. 

The second family, "Failure probability", addresses intrinsic 
failures of equipment which are not caused by any external 
events which is explicitly modelled. A simple probability of 
failure (Matelli and Goebel, 2018) or a reliability function 
(Patriarca et al., 2021), is then used. To compute failure 
probability the failure rates available in literature and data 
bases can be used. In this case a binary state of equipment 
(failed vs nonfailed) is only considered. 

The third family of approaches uses fragility curves to 
determine the probability of sustaining a predefined level 
of damage or attaining a given damage state. This type of 
approach is typically used by works referring to Na-Tech 
disruptive events (subsection 3.1). The events proposed by 
the papers are hurricanes (Mahzarnia et al., 2020), floods 
(Argyroudis et al., 2020) or earthquakes (Caputo and 
Paolacci, 2017; Caputo et al., 2019a; Ferrario and Zio, 2013; 
Kalemi et al., 2020; Mussini et al., 2018), but the method 
can be extended to any other event from which to derive 
fragility curves. Fragility curves indicate the probability of 
reaching a specified damage state for each intensity value 
of the disruptive event.  For example, in the event of 
earthquake, the magnitude level can be indicated by PGA. 
In this case the failure occurs when the intensity of the 
disruptive event is greater than the equipment capacity 
which is assumed to behave like a random variable with a 
lognormal distribution, so that the probability of 
equipment failure PF (PGA) is: 

                 (1) 

where Ф is the standard Gaussian cumulative distribution, 
μ and β are the mean value and the logarithmic standard 
deviation of the capacitance distribution respectively 
(Caputo et al., 2019a). The average annual frequency of 
occurrence of each given intensity level of the disruptive 
event in an assigned geographical area is defined by the 
hazard curves (see subsection 3.1). By multiplying the 
average annual frequency of an event magnitude by the 
probability of equipment damage at that magnitude level, 
the annual average frequency of equipment failures is 
computed. 

Furthermore, fragility curves are well suited to random 
scenario generation methods (see subsection 3.3). For 
example, in Ferrario and Zio (2013), a random value is 
generated for each equipment (between 0 and 1): if the 
failure probability exceeds the random extracted value, it is 
considered failed. This approach fits well to including 
multiple levels of damage, each linked to a specific fragility 
curve (Caputo et al., 2019a; Kalemi et al., 2020). In this case 
the random number generated is compared with the 
probability of occurrence of the damage states of the 
element given by the appropriate fragility curves, and the 
damage state assigned will be the one of greater magnitude 
among those that have a greater probability than the 
number random extracted. In this way it becomes possible 
to diversify both the loss of capacity caused by the damage 
(Mussini et al., 2018), and the number and duration of the 

consequent restoration activities (Argyroudis et al., 2020; 
Caputo et al., 2019a; Kalemi et al., 2020). While generic 
fragility curves are available in the literature for a large 
number of equipment types, when a fragility curve cannot 
be found for the specific equipment or damage state of 
interest, it has to be built resorting to dedicated numerical 
computations performed by expert analysts.   

3.3 Scenarios generation 

The purpose of the various strategies is to generate damage 
scenarios that are as representative as possible of the 
general behaviour of the system in the event of a disruption. 
Specification of a scenario consists in defining a different 
combination of damaged and undamaged system elements. 
A single user-defined scenario can be used. Otherwise a 
procedure for generating multiple scenarios is adopted.  

The "Arbitrary user-defined scenarios" is certainly the 
simplest method. Used both in the process industry 
(Caputo and Paolacci, 2017; Caputo et al., 2019a; Patriarca 
et al., 2021), and in the manufacturing industry (Caputo et 
al., 2019b; Xi et al., 2015), this approach allows to simulate 
scenarios, leaving the user to choose the elements of the 
system that are damaged or not. It can be very useful in case 
the goal is to evaluate the resilience of the system in specific 
situations (i.e. in the case of damage to critical equipment) 
and is easy to apply. However, due to its arbitrary nature it 
can hardly help to provide a general appraisal of the system 
resilience. 

The second approach is "Systematic generation of all 
possible scenarios". This may require using combinatorial 
analysis to automatically and exhaustively list all 
conceivable scenarios, although in the real world the 
number of combinations to consider rapidly grows to 
become unmanageable (especially when multiple instead of 
binary damage states are allowed for each resource). In this 
case a procedure to identify more likely scenarios or, 
conversely, worst-case scenarios may be required. In the 
works adopting this approach (Caputo and Paolacci, 2017; 
Caputo et al., 2019a), the probability of occurrence of each 
generated scenario is computed and only the ones 
exceeding a predefined threshold are evaluated. 

To solve this limitation, the "Monte Carlo Simulation" 
approach was introduced (Caputo et al., 2019a; Ferrario 
and Zio, 2013; Kalemi et al., 2020): in this case the damage 
scenarios are generated randomly over a suitably large 
number of replications. The latter strategy, provided that 
an adequate number of simulations are carried out, can 
combine the advantages of a lower computational 
complexity, with an adequate representativeness of the 
system behaviour. Furthermore, the computational 
complexity can be further reduced through K-means 
clustering (Mahzarnia et al., 2020): in this way only a 
reduced number of significant scenarios will be required to 
realistically represent a much larger number of actual 
possible scenarios, thus generating a computationally 
simpler problem. 

3.4 Initial capacity loss estimation  

The initial estimate of the loss of capacity consists in 
defining the residual capacity of system C(td) (fig. 1) 
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following the disruptive event. A function correlating the 
damage state of each single equipment to the overall system 
state and capacity is thus required. Such a correlation can 
be obtained either through analytical or numerical 
simulation models, with the former usually limited to binary 
states of the resources. The latter instead allow multiple 
states and complex dynamic interaction logic between 
components which cannot be captured in analytical 
models. It is important that the function considers the 
structure of the plant's process flows, as this can affect the 
overall residual capacity and business interruption loss. In 
fact, according to the process structure, a total or partial 
loss of some equipment can either determine partial or total 
loss in the capacity of one or more process flows and plant 
sections.  

Some authors (Ferrario and Zio, 2013) use fault trees to 
compute the system state based on the binary state of its 
components. Other authors (Matelli and Goebel, 2018; 
Patriarca et al., 2021) addressing simple systems, assign a 
predefined capacity loss to any given damage scenario. This 
approach cannot be considered a real model, as its 
application on systems of greater complexity would be 
impractical. Another approach to calculating residual 
capacity is the Capacity Block Diagram (CBD) (Caputo and 
Paolacci, 2017; Caputo et al., 2019a; Kalemi et al., 2020; 
Mussini et al., 2018). In the CBD all equipment belonging 
to a process flow (PF) is grouped into sequential process 
stages (PS) connected in series. Each PS, in turn, is 
composed of several resources, connected in series, or in 
parallel, in a similar way to what happens in the reliability 
block diagram and in the function structure used in 
reliability analysis. In this way it is possible to: calculate 
residual capacity of the system taking into account the 
structure of process flows and a binary variable 
representing the state of each equipment, also 
distinguishing between the loss of capacity of distinct 
process flows, allowing a consequent more accurate 
calculation of the economic loss. CBD approach has been 
applied even in the manufacturing industry (Caputo et al., 
2019b), where the change of process routings can allow to 
optimize the residual capacity of the system. Xi et al. (2015) 
refer to manufacturing plants employing a model for 
calculating the residual resilience of the system based on 
Bernoulli Reliability model and Markov Chain, through 
which the loss of production capacity in different 
configurations is computed. However, the model does not 
allow to distinguish between multiple process flows.  

The last type of approach identified is discrete event 
simulation. Used in the calculation of Supply Chain 
resilience (Lohmer et al., 2020) it can be an interesting 
alternative to the models applied up to now in industrial 
plants, as it brings with it several advantages. In fact, in a 
simulator it is easier to analyse articulated systems than 
analytical methods, since the function that correlates the 
loss of capacity of a component with the capacity of the 
whole system is defined by the user-programmed logic. 
Furthermore, it is possible to represent the process flows 
in a more flexible way, allowing to study a model that is 
closer to reality. On the other hand, both the construction 
of the simulation model and its correct use can be a 
complex task. 

3.5 Time trend of capacity recovery  

The construction of the trajectory of capacity recovery over 
time consists in plotting the capacity value during the time 
interval tc and tr (Fig. 1) representing the period required to 
carry out recovery activities. A first approach (Cimellaro et 
al., 2006; Singhal et al., 2020) assumes a predefined 
mathematical function to represent the time trend of 
capacity recovery (linear, exponential, and cosine 
functions). This implies that actual recovery activities are 
not modelled in detail. In fact, a continuous recovery curve 
may not be realistic (Mussini et al., 2018), as discrete change 
of capacity may occur as soon as an equipment is brought 
back into operational state. Such "stepped" curves may be 
obtained from models in which recovery activities are 
scheduled over time, providing immediate capacity 
recovery correlated to each completed equipment recovery 
activity according to the functional role played by the 
equipment. Authors using such an approach have adopted 
simple scheduling (Mussini et al., 2018) or simulations 
(Patriarca et al., 2021). However, in both cases mutual 
interactions and logical constraints between recovery 
activities of the various equipment, which may delay the 
start of subsequent activities, are neglected. Ferrario and 
Zio (2013) adopt the fault tree to model the interactions 
between activities. Caputo and Paolacci (2017), on the 
other hand, addresses the problem by means of a recovery 
activity network similar to those used to schedule tasks in 
project management. At first a generic network is built for 
the entire plant, including all possible recovery tasks, then 
a zero duration task duration is assumed for all undamaged 
equipment. In this manner a generic network can be 
transformed into the actual activities network 
corresponding to a specific damage scenario. This allows 
both to derive a capacity curve correlated to the completion 
of the individual recovery activities and to consider the 
logical-temporal correlations between the activities 
themselves considering mutual interactions between the 
recovery activities of different equipment. Task duration 
can be either deterministic or randomly sampled from a 
probability density distribution. In both cases the task 
duration can be correlated to the damage level of the 
equipment. 

3.6 Economic loss analysis 

Economic loss analysis plays an essential role in calculating 
resilience by providing indicators of expected economic 
losses. Unlike the other subproblems, where each approach 
was alternative to the other, in this it is possible to make 
use of even more than one of the indicators identified. 
Initial damage and temporary operations interruption 
caused by the disruptive event, often determine an 
economic loss. Therefore, resilience computation can be 
integrated with the consequent economic loss estimation. 
The main cost items identified are the Business 
Interruption cost and the Repair cost. The first represents 
the contribution margin of the lost production caused by 
capacity loss. As a result, the more precise the method of 
calculating the loss of capacity and the recovery interval 
duration (subsections 3.4 and 3.5), the more accurate the 
calculation of the Business Interruption cost will be. The 
second item represents the expenditure generated by the 
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recovery activities. The accuracy of its calculation depends 
on the rigor in correctly identifying the restoration activities 
to be carried out (subsection 3.5) and on the precision in 
the detailed definition of the damage states (subsection 3.2), 
based on which both the number of activities to be carried 
out and their importance, and therefore cost, can vary. 
Some authors only consider the Business Interruption cost 
(Lohmer et al., 2020), while other the Repair costs only 
(Singhal et al., 2020), but obviously both cost items may be 
significant. Therefore, some authors (Caputo and Paolacci, 
2017; Caputo et al., 2019a, 2019b) consider both. Kalemi et 
al. (2020) consider an overall Expected Annual Loss 
computed as the average economic loss for each intensity 
value of the disruptive event times the probabilities of 
occurrence of each intensity level. Also Mussini et al. (2018) 
uses the EAL but expressed in days of shut down, 
considering only the Business Interruption cost and not the 
Repair costs. 

3.7 Resilience quantification 

A number of different formulations have been suggested to 
compute resilience based on the knowledge of the capacity 
recovery curve (Benczur et al., 2020). Table 2 lists the 
formulas more frequently used. They fall under two 
approaches, namely those aimed at computing resilience 
(i.e. the higher the better), and those aimed at computing 
the loss of resilience (the lower the better). Eq. 2 represents 
the typical resilience calculation formula: it consists of a 
dimensionless indicator referring to the percentage 
functionality maintained by the system with respect to full 
capacity, in the time span affected by the destructive event 
and by the recovery activities (the variables refer to Fig. 1) 
for a given damage scenario (Argyroudis et al., 2020; 
Caputo et al., 2019b; Singhal et al., 2020). In eq. 3 a 
weighted average resilience over a set  Ω of different 
scenarios is computed, where each s-th scenario has an 
occurrence probability p(s), and C(t, s) and d(t) are 
respectively capacity and demand for capacity (Zhao et al., 
2016). In eq. 4 the average resilience is calculated through 
an arithmetic mean of the resilience of the scenarios, as 
these are generated through Monte Carlo simulation 
(resilience of each scenario is calculated trough eq.2). In this 
case it is not necessary to use a weighted average, because 
the probability of occurrence of the scenarios has already 
been considered in the generation of the scenarios 
themselves (Kalemi et al., 2020). Patriarca et al. (2021), 
instead compute in Eq. 6 a conventional resilience by logic 
combination of three indicators. An Absorption metric 
(Ab), expressing the percent initial capacity loss. An 
adaptation metric (Ad), expressing the percent duration of 
the latency period. A recovery metric (Rec), expressing the 
rapidity of the capacity recovery. Unlike the first category 
of formulas, in eq. 5 the resilience loss is calculated, which 
corresponds to the area over the capacity curve, referred to 
fig. 1, which is lost due to the disruptive event (Caputo et 
al., 2019a; Cincotta et al., 2019). Instead of a capacity vs 
time plot, the resilient behaviour of a system can be also 
represented as a surface by adding a third dimension 
representing the intensity of the disruptive event, as done 
by Kalemi et al. (2020) when introducing the Operational 
Capacity Surface. 

Table 2: Resilience calculation formulas 

 

3.8 Results discussion 

Based on the above review, the following critical remarks 
can be pointed out. Although resilience of industrial plants 
received less attention by scholars as compared to civil 
infrastructure, supply chains and networked utilities, in 
recent time this topic is starting to become an active 
research stream, but an exhaustive solution to the issues 
related to resilience assessment of industrial plants is still 
missing. Many authors only focus on a few steps of the 
overall resilience computation. Therefore, only a few 
models are available for full resilience assessment over a 
range of scenarios and equipment damage levels accounting 
for full consequences quantifications (Caputo and Paolacci, 
2017; Caputo et al., 2019a; Kalemi et al., 2020). In 
particular, the construction of capacity recovery curves is 
often carried out adopting rough-cut methods. Only few 
works consider the peculiarities of manufacturing plants, 
and in general few authors consider the actual structure of 
process flows to capture the interactions between process 
units either as far as capacity or recovery activities are 
concerned. A standardized method to account for 
scenarios generation and resilience computation is not yet 
agreed upon. 

Apart from the conceptual differences in the adopted 
models, the following issues still need to be addressed, 
namely, the optimal planning of the capacity recovery 
process, the optimal cost-effective planning of protective 
and preventive actions required to enhance resilience, and 
the definition of proper sensitivity metrics to assess the 
criticality of each system component as far as the overall 
resilience is concerned. Solving the above mentioned 
issues, together with a precise methodology to compute 
resilience would allow plant managers and decision makers 
to optimally design industrial plants in order to maximize 
resilience or minimize loss in the face of expected 
disruptive scenarios. 

4.Conclusion  

The literature review carried out in this paper showed that 
resilience computation of industrial plant, even if neglected 
in the past is starting to gain academic attention. However, 
an exhaustive and standardized methodology to assess 
resilience has not yet been developed. The existing models 
apart from adopting different conceptual approaches, often 
focus on single issues while neglecting others. Therefore 
there is ample room for future research to fill the gaps 
identified in this critical review. The main contribution of 
this paper lies in the systematic classification of resilience 
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computation steps and in comparison of existing 
approaches to identify strengths, weakness and gaps of the 
available mode. This conceptual map can guide researcher 
in developing more effective resilience computation 
methods for industrial plants. 
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