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Abstract:  

The fourth industrial revolution, as the others, has introduced a new paradigm. This new paradigm refers to the set of digital 
innovations that are changing the manufacturing systems. The growing adoption of innovative devices in the production 
process has radically changed operator's work. 'New' operator is required to interact with the new technological devices. This 
means that the operator is employed in more cognitive than physical task. If on one hand the tasks are changing, on the other 
ones the existing models, already adopted in workload evaluation, are mainly focused on motor performances rather than 
cognitive ones. Therefore, in many cases they could not be applied. Further strong limitations are highlighted by scientific 
literature, on the existing methods adopted for the cognitive workload evaluation, in most of cases the evaluation is strictly 
related to a specific task, a large number of data samples is required, the data elaboration is quite complex and high 
computation times are required.    

Consistently with the issues above mentioned, the purpose of this paper consists in develop a numerical mathematical model 
allowing to evaluate the cognitive workload in smart manufacturing systems, in order to quantify the cognitive workload to 
assign to worker, avoiding a high rate brain occupancy,  as well as a high  psychological pressure lead to performance reduction 
in terms of reliability and safety. 

The model developed is applied to a full case-study, the results shown the effectiveness of the methodology introduced to 
predict the cognitive workload and provide a valuable tool for a preliminary evaluation of the human performance in 
production systems.   
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1. Introduction 

The fourth industrial revolution introduced new paradigms 
in manufacturing systems and in industrial systems 
(Facchini et al. 2020). Manufacturing companies have been 
encountered different challenges, due to with an increasing 
level of variability. Variability implies different set of 
dimensions such as demand, volume, process, 
manufacturing technology, customer behaviour and 
supplier attitude; as a result, it has transformed industrial 
systems engineering domain (Demartini et al. 2017), 
(Pacchini et al. 2019), (Lucato et al. 2019). Smart systems 
use cyber-physical systems to provide communication and 
intelligence for artificial and technical systems (Reiner 
Anderl 2014). The smart manufacturing systems are based 
on a digital network where the physical context is closely 
intertwined with artificial intelligence allowing to monitor 
and manage the production process at operational and 
procedural levels. A list of characteristics, technologies and 
enabling factors for manufacturing systems is provided by 
Mittal et al. (Mittal et al. 2019). 

In this context, information processes aimed at workers are 
supported by innovative technologies (Damiani et al. 2018). 
The introduction of smart manufacturing systems led to 
promote the adaptability, the flexibility, as well as the 
efficiency of the new manufacturing processes. Indeed, the 
adoption of more complex automatic machines and 

innovative robotic cells is required (Villani et al. 2017). 
Despite the complexity and the automation degree of the 
machines adopted is increasing, the contribute of workers 
to the manufacturing process such as control and 
supervision of the tasks, it is essential. Most of tasks in 
manufacturing processes, such as set up of machine the 
parameters, robot re-configuration, process monitoring, 
and so on,  are carried out through the use of computerized 
human-machine interfaces, in which the human 
contribution cannot be replaced (Nachreiner et al. 2006).  

Consistently with this trend, the increasing adoption of 
innovative devices in manufacturing process led to radically 
change the work activities and the ‘new’ operator is called 
“Operator 4.0”. The concept of “Operator 4.0” is based on 
the Human-Cyber -Physical Systems plan to promote the 
cooperation between human and machines. According to 
Romero et al., the “Operator 4.0” is a skilled operator who 
performs cooperative work with robots and is also helped 
by machines (Romero et al. 2016). The changes introduced 
in industry 4.0 led to a workload shift, from physical to 
more cognitive tasks, leading operators to perform tasks 
that require high cognitive demand (Pascual et al. 2019). 

In last years, the interest of the scientific community in 
cognitive or mental workload evaluation in manufacturing 
applications, it is significantly increased (Morton et al. 
2019). Since it is not unlikely that the increasing tasks 
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complexity and the need to operate in more flexible way, 
will make it harder for the worker to perform the job in a 
proper way; consequently, it is highly important to 
accurately measure cognitive load and explore ways to 
avoid or reduce this load (Gevins & Smith 2003) (Kosch et 
al. 2018). In general, mental workload is defined as the 
interaction between the operator and an assigned task 
(Bommer & Fendley 2018), while cognitive workload is 
defined as the human information processing load while 
performing a particular task (Sheridan & Stassen 1979). 
Information processing load is closely related with the 
amount of attention that must be directed to a task; 
therefore, cognitive workload increases with task difficulty 
(Lively et al. 1993). Humans have only a limited capacity of 
attentional resources; therefore, performance suffers when 
subjects are required to simultaneously engage in two or 
more attention-demanding task (Schneider & Shiffrin 
2017), (Intranuovo et al. 2019). This is an important 
measurement because the cognitive workload provides the 
awareness to where the human performance is 
unacceptable when task's demand increases. 

In this perspective, recent scientific studies proved that the 
performance of production systems can be affected by 
from excessive cognitive workload  (Thorvald et al. 2019).  

As cited by Bi and Salvendy (Bi & Salvendy 1994b), the 
traditional task analysis techniques based on continuous 
monitoring of human behaviour are no longer appropriate. 
In most of cases, the corresponding evaluation is strictly 
related to a specific task, and a many data samples are 
required. Consistently with currently issues, the purpose of 
this paper consists in develop a numerical mathematical 
model allowing to evaluate the cognitive workload in  
manufacturing systems, in order to quantify the cognitive 
workload to assign to worker, avoiding a high occupancy 
brain rate, as well as a high psychological pressure leading 
performance reduction in terms of reliability and safety.  

The remainder of this paper is organized as follows: a 
literature review and the model description are introduced 
in section 2 and 3, respectively; discussion of results 
obtained by applying the model a full-case study are in 
section 4; conclusions of this work are in section 5. 

 

2. Methodologies to assess the cognitive 
workload  

Nowadays many definitions of cognitive workload are 
available on scientific literature, according to Meshkaty 
none of them is consistent of quantitative validation and 
can be applied in different work environment. At general 
purpose, cognitive workload can be defined a 
multidimensional variable affected by many factors 
(Meshkati 1988). Cognitive load is a multi-dimensional 
variable and not a unitary construct; it covers working 
memory processes ranging from attention and perception 
to memory and decision-making (Young et al. 2015). 
Originally, the concept of cognitive load is evolved from 
the instructional and educational field, coming together in 
a  cognitive load theory (CLT) (Sweller 1988) (Sweller 
1994).  

Consistently with the multidimensional nature of the 
cognitive load concept, cognitive load measures are 
heterogeneous in nature. In general, the literature 
converges towards assessing cognitive load based on 
subjective self-reporting, psychophysiological, 
performance, and analytical measurements (Young et al. 
2015) (Cain 2007) (O’Donell & Eggemeier 1986) (Van 
Acker et al. 2018) (Wei et al. 2014) (Linton et al. 1989) (Xie 
& Salvendy 2000) (Patel et al. 2002). 

The subjective self-reporting methods include the NASA 
Task Load Index (NASA-TLX) (Hart & Staveland 1988), 
Subjective Workload Assessment Technique (SWAT) (Reid 
et al. 1988), Modified Cooper-Harper Scale (Wierwille & 
Casali 1983), and many others. The physiological 
measurements are based on the changes of the physiology 
parameters of the operator due to change of cognitive 
workload required by task to be performed; in this category 
are included oxygen consumption evaluation, heart rate 
measurement, ongoing Electroencephalography EEG, and 
so on. The performance measurements include control 
models, generally adopted for monitoring the evolution of 
task performance over-time.  A review and reappraisal on 
the current research on the cognitive task analysis 
methodology is presented by Wei et. al (Wei et al. 2014). 
The authors provide a classification of the current cognitive 
task analysis methods and they point out commonalities 
and differences among all these one. 

In 1989, Linton et al. provide a taxonomy on the existing 
analytical and empirical methodologies to evaluate the 
cognitive workload (Linton et al., 1989).    

Analytical methods are directed at estimating the cognitive 
load and collect subjective data with techniques such as 
expert opinion and analytical data with techniques such as 
mathematical models and task analysis.  Bi and Salvendy (Bi 
& Salvendy 1994a) say that the most prominent analytical 
models used to assess and predict the cognitive workload 
are: information theory (Shannon 1948), control theory and 
queuing theory (Rouse & White 2008). Each model 
contains a parameters or components that reflect the 
operator's load or effort required under specified 
conditions.  

 

3. Materials and method 

The model developed in this paper allows to identify the 
cognitive load imposed on the operator evaluated on the 
basis on the task’s characteristics and human ones. Our idea 
is that the cognitive load depends on three macro variables: 
task complexity, capacity to store and retrieve stored 
information, and information processing strategies. 

The developed model is based on the evolution of 
mathematical model recently introduced by Kumar and 
Kumar (Kumar & Kumar 2019), that it is focused on 
evaluating of human efficiency for industry 4.0. Kumar and 
Kumar (Kumar & Kumar 2019) say that the human 
efficiency is an outcome of the combined cognitive and 
physical efficiencies, as follow (eq.1):  

𝐻𝐸 = 𝐻𝐶𝐸 + 𝐻𝑃𝐸     (1) 
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where HE is the human efficiency, HCE is the human 
cognitive efficiency and HPE is the human physical 
efficiency.  

According to Kumar and Kumar (Kumar & Kumar 2019), 
in the smart manufacturing systems due to, the increasing 
adoption of adaptive automation movement, the physical 
tasks are allocated to the machines and no more to the 
operators. Therefore, the tasks that have to done manually 
by the operator are negligible if compared with ones that 
required operator cognitive effort; so, the HPE term can be 
neglected. Consequently, HE can be evaluated as an 
outcome of HCE alone, as represented in the equation 2. 

𝐻𝐸 = 𝐻𝐶𝐸      (2) 

HCE is given by following equation: 

𝐻𝐶𝐸 = 𝑇𝐸
𝐶𝐿⁄       (3) 

where the task efficiency (TE) and the cognitive load (CL) 
are given by the equations 4 and 5, respectively 

 𝑇𝐸 =
𝑇𝑜𝑡𝑎𝑙𝑡𝑎𝑠𝑘𝑠−𝑁𝑒

𝑇𝑜𝑡𝑎𝑙𝑡𝑎𝑠𝑘𝑠
     (4) 

TE is the ratio of the set of tasks performed successfully 
versus the total number of tasks that operator has to ones. 
In the eq. 4, Ne identifies the number of errors made in tasks 
execution, and Totaltasks is the overall number of tasks. 

𝐶𝐿 = 𝐾 × 𝑇𝑅      (5) 

Where CL is the cognitive load; it is defined as the work 
required to process an information measured in bit, K 
represents a constant that reflects the worker’s 
demographic and psychographic features that can influence 
the operator’s cognitive performance and it can be 
attributed to the elements such as age, competency, skills, 
stress level and so on (Patel et al. 2002), and TR is the 
transmission rate.  

As cited by Bi and Salvendy (Bi & Salvendy 1994a), 
decisions that are made define the tasks and the functions 
for which the operator is responsible. These decisions 
define the TR imposed on the operator. It is possible define 
the TR (eq.6) as the amount of information that must be 
processed in a prefixed time. The amount of information 
measured in (bit) can be pattern according to information 
theory (Park 1987) (Shannon 1948). 

𝑇𝑅 =
𝑙𝑜𝑔2(𝑁)

𝑡
      (6) 

where TR is the transmission rate of information that the 
operator has to process measured in bit on time, N is the 
number of equiprobable decision alternatives available, and 
t is the task time measured in minutes. 

The value of the K-constant can be identified in accordance 
to definition of ‘resistance’, introduced by Patel’s model 
(Patel et al. 2002). Consistently with this approach K-
constant is given by equation 7 

𝐾 =
(𝑁𝐴𝑆𝐴 − 𝑇𝐿𝑋𝑆𝑐𝑜𝑟𝑒 × 𝑡)

(𝑙𝑜𝑔2(𝑁))2⁄    (7) 

NASA-TLX is a multidimensional assessment tool that 
measure perceived workload in order to assess the 

complexity of a generic task, the methodology is based on 
the adoption of a test to be filled by the worker. The output 
is given by a score based on a 100-point scale, that include 
six weighted subscales consistent with cognitive demand, 
physical demand, temporal demand, performance, effort 
and frustration level of the analysed worker (Eggemeier 
1981). 

NASA-TLXScore shown in equation 7, it is the score of the 
test obtained by the worker tested, and t is the time 
required, by same worker, to complete the set of tasks. 

In order to summarize the model's abbreviations presented 
above, the following table is inserted. 

Table 1: Definitions of significant abbreviation in 
developed model 

Abbreviation Term 

HE Human efficiency 

HCE Human cognitive efficiency 

HPE Human physical efficiency 

CL Cognitive load 

K Demographic and 
psychographic constant 

TR Transmission rate 

TE Task Efficiency 

Totaltasks Total number of tasks that 
operator has to perform 

Ne Number of errors made in tasks 
execution by operator 

NASA-TLXscore NASA-TLXscore is the NASA-
TLX test score obtained by the 
subjects 

t Task’s time 

N Number of equiprobable 
decision alternatives available 
to perform the task 

 

4. Experiment setting 

As mentioned in Section 1, the increasing adoption of 
innovative devices and technologies is changing the 
operator's work. The smart operator is employed in more 
cognitive tasks, and he/she is asked to process in the unit 
time more information. N-back task level has become a 
standardized tool to simulate tasks with different cognitive 
complexities, especially about in neuroscience cognitive 
study. 
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The n-back task is a standardized working memory and 
attention task with four incremental levels of difficulty 
(Ayaz et al. 2010).  

The tester is define as one who runs the test; they are asked 
to monitor stimuli (single letters) presented on a computer 
screen and click a right shift button when a letter on the 
screen is target or left shift button when a letter on the 
screen is not target. Two conditions were used to 
incrementally vary cognitive workload, 0-back and 2 back. 
In the 0-back condition, participants responded to a single 
prespecified target letter (e.g., “X”); while in the 2-back 
conditions, the targets were defined as any letter that was 
identical to the one presented two trials back. Increasing 
the number of letters included between two target letters, 
increase the task’s difficulty and complexity, since a higher 
memory effort is required.  

 The experiment has been conducted on a sample of 
students recruited from Polytechnic University of Bari, 
each test required a session of 5 minutes. The students 
involved are eight males and six females; they are master’s 
degree students or PhD students in engineering, and the 
average age is 26.5.  

Before starting the n-back task, the subjects to be tested 
read the instructions and the finality of the experiment. The 
experiment is conducted in two session, each of them 
consists of 7 subjects. After the first level of the n-back task 
is finished, the NASA-TLX score for each subject is 
known. After a rest period (5 minutes), the subjects start 
the second task with a different level of the previously 
session and he/she fill the other NASA-TLX test. The test 
finished when both n-back tasks and NASA-TLX tests are 
concluded. 

 

4.1. Results  

The NASA-TLX score for each subject, is shown in Table 
2. 

Table 2: NASA-TLX score 

Subject NASA-TLX 
Level 0 

NASA-TLX 
Level 2 

1 28.33 58.33 

2 45.83 53.33 

3 31.66 60.83 

4 23.33 29.16 

5 20.83 40.83 

6 15.00 77.5 

7 15.83 46.66 

8 25.83 47.5 

9 5.00 15.83 

10 19.16 35.00 

11 25.83 55.00 

12 18.33 42.5 

13 29.16 49.16 

14 5.00 29.16 

 

The TR values evaluated in accordance to equation 6, for 0 
and 2 level of n-back test, are summarized in table 3.  

Table 3 - Transmission Rate (bits/time) 

 Transmission Rate 

0-Back Task Level 0.2 

2-Back Task Level 0.2 

 

For 0-back and 2-back task level, in table 4 and 5 are 
showed the values of the mean, variance, standard 
deviation and the coefficient of variation for CL, TE and 
HCE, respectively. 

Table 4: Mean, variance, standard deviation and coefficient 
of variation 

0-Back 
Task Level 

CL TE HCE 

μLev.0 22.08 0.99 0.07 

σ2
Lev.0 105.13 0.00012 0.003 

σLev.0 10.25 0.011 0.06 

ρLev.0 0.46 0.011 0.84 

 

Table 5 - Mean, variance, standard deviation and 
coefficient of variation 

2-Back 
Task Level 

CL TE HCE 

μLev.2 45.77 0.83 0.02 

σ2
Lev.2 224.83 0.0072 0.00011 

Lev.2 14.99 0.09 0.01 

ρLev.2 0.33 0.10 0.49 
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Figure 1 shows the relationship between the CL and TE for 
both the task’s levels. Furthermore, in the plot is 
represented the trend for each level, the blue line for 0-back 
level and the orange one for 2-back level. 

 

Figure 1 - Field Test of Task efficiency vs. Cognitive Load 

 

Figure 2 shows the relationship between the CL and HCE 
for both task’s levels. 

 

Figure 2 – Human Cognitive Efficiency vs. Cognitive Load 
for 0-back and 2-level Tasks level 

 

The HCE differences of the subjects interviewed, between 
0 level and 2 level, is showed in figure 3.  

 

Figure 3 - Field test on Human Cognitive Efficiency 

HCE, in function of CL, can be qualitatively described as 
an iso-task efficiency curve, for a given TE.  

Applying the logarithm and then the exponential to eq. 
eq.3, it is obtained the following equation 

𝐻𝐶𝐸 = 𝑒(𝑙𝑛(𝑇𝐸)−𝑙𝑛(𝐶𝐿))            (8) 

In the study conducted, the iso-task efficiency (TE) curve, 
for 0-level, has been determined by eq. (8) and it is plotted 
in figure 4. 

Where TE is constant (in this case equal to 98%) and 
represents the subject performance’ level required to 
perform the task. 

 

Figure 4- Iso-task efficiency (TE) (0-back task level) 

4.2. Discussion 

The focus of this study is to assess the cognitive workload 
through a numerical model. In this study the perceived 
cognitive load has been simulated through 0-back and 2-
back of n-back test. In both cases the number of available 
decisions is two, consequently the number of bits to 
elaborate is the same. Task’s complexity depends on the 
ability to store and retrieve the information stored by the 
subject that performs the task. 

Analysing the values in tables 4 and 5, it is observed that 
the  μLev.2(CL) increases if compared to μLev.0(CL), 

Lev.2(CL) increases if compared to Lev.0(CL), and (CL), 
decreases from the level 0 to the level 2. The μLev.0(TE) 
decreases if compared to μLev.2(TE) while σLev.2(TE) 

increases if compared to σLev.0(TE) and so the (TE) value 
increases from the level 0 to the level 2. The μLev.2(HCE) 
decreases if compared to μLev.0(HCE), similarly, 

Lev.2(HCE) decreases if compared to Lev.0(HCE). Indeed, 
for more complex task (i.e. from 0-back to 2-back), the 
increase of expected value of CL is greater than the 
reduction of the TE. Therefore, the overall human 
cognitive efficiency is reduced with a lower uncertainty.  
The average value of CL (tab 4 and 5) increases with 
increasing of the complexity of the task (0- and 2-back task 
level). Similarly, the average TE decreases with increasing 
of the task’s complexity. The relationship between CL and 
TE for both levels (fig. 1) show that at level 0 (blue-line) 
the performances are almost constant (equal to 100%); 
while at level 2, the performances are still high but they are 
characterized by greater variability and higher slope 
(orange-line). Most of the CL-values at level 0 are localized 
in the left side of the chart (i.e. low values), while the CL-
values at level 2 are localized to the right side (i.e. high 
values). Furthermore, by relating the TE with CL (fig.1) it 
is possible observed that the TE depends on the task 
complexity. For both levels, there are CL overlapping areas 
(fig.1), but on average a complex task has a greater CL 
value; although participants sample is small. CL values 
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overlapping is due to that it is evaluated from NASA-TLX 
values and it is a subjective measurement of perceived 
cognitive workload by the subject. 

The expected value of the HCE decreases in the 2-back task 
level as shown in tables 4 and 5. It is possible to observe 
that for more complex task, there is a significantly 
reduction of HCE (fig. 2 and 3). The uncertainty of HCE 
decreases when the complexity of the task increases (tab 4 
and 5).It is observed that when the HCE decrease, the 
cognitive load increase (fig. 2).The CL can be considered as 
an amount of energy required by subject to process one bit 
of information. The iso-task efficiency curve obtained in 
the current study (fig. 4) shows the amount of work 
required to perform the set of tasks by the subjects, keeping 
the same performance. 

 

5. Conclusion 

Study results indicate that the analytical model developed 
can be adopted to assess the cognitive workload. This 
model allows to identify the task’s complexity and the 
personal skills. According to the case study conducted, the 
subject's ability to store and retrieve information is a part 
of personal skills. For given tasks and for the same number 
of bits to be processed, the difficulty depends on the 
subject capacity to memorize the information.   

In the current study the workload per bit was estimated for 
both level of n-back test. The average value shows that the 
two levels have a different perceived CL. The 2-back level 
requires more workload per bits than the 0-back level; 
therefore, the perceived CL is greater for level 2-back. 
Furthermore, when the CL is low, the subject’s 
performances are higher. In case of the average CL 
increases, the average performance decreases of 16%. 
Similarly, increasing the task complexity decrease the 
uncertainty of HCE. However, the small size of the sample 
of participants did not allow to point out significant 
statistical differences between the two levels of the n-back 
test. Despite of, the average values show differences 
between the two n-back levels. 

However, the developed model can be used to predict the 
perceived cognitive workload and evaluate the operator 
characteristics in any situation and in any work 
environment. From a managerial point of view, the 
developed model can be used to assign operators to tasks, 
avoiding that a specific operator is assigned a task that 
he/she is unable to perform. Avoiding a high operator's 
rate brain occupancy, which leads a decreasing operator's 
performance. 

Future research should be required to validate this model 
across a larger sample of participant and across different 
tasks complexity. Additional research should also be 
focussed on researching at different types of tasks and how 
the K constant value varies by the different type of tasks. 
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